دورية أكاديمية

Automatic classification and segmentation of blast cells using deep transfer learning and active contours.

التفاصيل البيبلوغرافية
العنوان: Automatic classification and segmentation of blast cells using deep transfer learning and active contours.
المؤلفون: Ametefe DS; Wireless Communication Technology Group, College of Engineering, School of Electrical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia., Sarnin SS; Wireless Communication Technology Group, College of Engineering, School of Electrical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia., Ali DM; Wireless Communication Technology Group, College of Engineering, School of Electrical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia., Ametefe GD; Department of Biotechnology, College of Science, Engineering and Technology, Osun State University, Osogbo, Nigeria., John D; College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM), Puncak Perdana, Malaysia., Aliu AA; College of Built Environment, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia., Zoreno Z; Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria.
المصدر: International journal of laboratory hematology [Int J Lab Hematol] 2024 May 10. Date of Electronic Publication: 2024 May 10.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 101300213 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-553X (Electronic) Linking ISSN: 17515521 NLM ISO Abbreviation: Int J Lab Hematol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Blackwell Scientific Publications, c2007-
مستخلص: Introduction: Acute lymphoblastic leukemia (ALL) presents a formidable challenge in hematological malignancies, necessitating swift and precise diagnostic techniques for effective intervention. The conventional manual microscopy of blood smears, although widely practiced, suffers from significant limitations including labor-intensity and susceptibility to human error, particularly in distinguishing the subtle differences between normal and leukemic cells.
Methods: To overcome these limitations, our research introduces the ALLDet classifier, an innovative tool employing deep transfer learning for the automated analysis and categorization of ALL from White Blood Cell (WBC) nuclei images. Our investigation encompassed the evaluation of nine state-of-the-art pre-trained convolutional neural network (CNN) models, namely VGG16, VGG19, ResNet50, ResNet101, DenseNet121, DenseNet201, Xception, MobileNet, and EfficientNetB3. We augmented this approach by incorporating a sophisticated contour-based segmentation technique, derived from the Chan-Vese model, aimed at the meticulous segmentation of blast cell nuclei in blood smear images, thereby enhancing the accuracy of our analysis.
Results: The empirical assessment of these methodologies underscored the superior performance of the EfficientNetB3 model, which demonstrated exceptional metrics: a recall specificity of 98.5%, precision of 95.86%, F1-score of 97.16%, and an overall accuracy rate of 97.13%. The Chan-Vese model's adaptability to the irregular shapes of blast cells and its noise-resistant segmentation capability were key to capturing the complex morphological changes essential for accurate segmentation.
Conclusion: The combined application of the ALLDet classifier, powered by EfficientNetB3, with our advanced segmentation approach, emerges as a formidable advancement in the early detection and accurate diagnosis of ALL. This breakthrough not only signifies a pivotal leap in leukemia diagnostic methodologies but also holds the promise of significantly elevating the standards of patient care through the provision of timely and precise diagnoses. The implications of this study extend beyond immediate clinical utility, paving the way for future research to further refine and enhance the capabilities of artificial intelligence in medical diagnostics.
(© 2024 John Wiley & Sons Ltd.)
References: Jha KK, Dutta HS. Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Comput Methods Programs Biomed. 2019;179:104987. doi:10.1016/j.cmpb.2019.104987.
Boldú L, Merino A, Acevedo A, Molina A, Rodellar J. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Comput Methods Programs Biomed. 2021;202:1‐13. doi:10.1016/j.cmpb.2021.105999.
Negm AS, Hassan OA, Kandil AH. A decision support system for acute Leukaemia classification based on digital microscopic images. Alexandria Eng J. 2018;57(4):2319‐2332. doi:10.1016/j.aej.2017.08.025.
Bhattacharjee R, Saini LM. Robust technique for the detection of acute lymphoblastic leukemia. IEEE Power, Communication and Information Technology Conference (PCITC). 2015.
Elangovan P, Nath MK. A novel shallow ConvNet‐18 for malaria parasite detection in thin blood smear images: CNN based malaria parasite detection. SN Comput Sci. 2021;2(5):1‐11. doi:10.1007/S42979‐021‐00763‐W/METRICS.
Venugopal V, Raj NI, Nath MK, Stephen N. A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images. Decision Anal J. 2023;8:100278. doi:10.1016/J.DAJOUR.2023.100278.
Keerthana D, Venugopal V, Nath MK, Mishra M. Hybrid convolutional neural networks with SVM classifier for classification of skin cancer. Biomed Eng Adv. 2023;5:100069. doi:10.1016/J.BEA.2022.100069.
Elangovan P, Nath MK. En‐ConvNet: a novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks. Int J Imaging Syst Technol. 2022;32(6):2034‐2048. doi:10.1002/IMA.22761.
Ghaderzadeh M, Hosseini A, Asadi F, Abolghasemi H, Bashash D, Roshanpoor A. Automated detection model in classification of B‐lymphoblast cells from normal B‐lymphoid precursors in blood smear microscopic images based on the majority voting technique. Sci Program. 2022;2022:1‐8. doi:10.1155/2022/4801671.
Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A. Machine learning in detection and classification of leukemia using smear blood images: a systematic review. Sci Program. 2021;2021:1‐14. doi:10.1155/2021/9933481.
Hosseini A, Eshraghi MA, Taami T, et al. A mobile application based on efficient lightweight CNN model for classification of B‐ALL cancer from non‐cancerous cells: a design and implementation study. Inform Med Unlocked. 2023;39:101244. doi:10.1016/J.IMU.2023.101244.
Ahmed R, Ahmed A, Hossam HY, Al‐Bagoury E. Artificial intelligence in healthcare enhancements in diagnosis, telemedicine, education, and resource management. J Contemp Healthcare Anal. 2022. Accessed Mar. 07, 2024. [Online];6(12):1‐12. https://publications.dlpress.org/index.php/jcha/article/view/55.
Borji A, Seifi A, Hejazi TH. An efficient method for detection of Alzheimer's disease using high‐dimensional PET scan images. Intelligent Decision Technologies. 2023;17(3):729‐749. doi:10.3233/IDT‐220315.
Di Ruberto C, Loddo A, Puglisi G. Blob detection and deep learning for leukemic blood image analysis. Appl Sci (Switzerland). 2020;10(3):1176‐1184. doi:10.3390/app10031176.
Salah HT, Muhsen IN, Salama ME, Owaidah T, Hashmi SK. Machine learning applications in the diagnosis of leukemia: current trends and future directions. Int J Lab Hematol. 2019;41(6):717‐725. doi:10.1111/ijlh.13089.
Nallaperumal K, Krishnaveni K. Watershed segmentation of cervical images using multiscale morphological gradient and HSI color space. Int J Imag Sci Eng (IJISE). 2008;2(2):212‐216.
Pansombut T, Wikaisuksakul S, Khongkraphan K, Phon‐On A. Convolutional neural networks for recognition of lymphoblast cell images. Comput Intell Neurosci. 2019;2019:1‐12. doi:10.1155/2019/7519603.
Prellberg J, Kramer O. Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. Lecture Notes Bioeng. 2019;1:53‐61. doi:10.1007/978‐981‐15‐0798‐4_6.
C_NMC_2019 Dataset: ALL Challenge dataset of ISBI 2019 (C‐NMC 2019)—The Cancer Imaging Archive (TCIA) Public Access—Cancer Imaging Archive Wiki. Accessed: May 24, 2022. [Online] https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758223.
Labati RD, Piuri V, Scotti F. All‐IDB: the acute lymphoblastic leukemia image database for image processing. Proceedings International Conference on Image Processing, ICIP, pp. 2045–2048. 2011. doi:10.1109/ICIP.2011.6115881.
Ametefe DS, Sarnin SS, Ali DM, Muhammad ZZ. Fingerprint pattern classification using deep transfer learning and data augmentation. Vis Comput. 2022;39(4):1703‐1716. doi:10.1007/s00371‐022‐02437‐x.
Labati RD, Member I, Piuri V, Fellow I, Scotti F. All‐IDB: the acute lymphoblastic leukemia image database for image processing. 2011.
Ametefe DS, Seroja SS, Ali DM. Fingerprint presentation attack detection using deep transfer learning and DenseNet201 network. J Electric Electron Syst Res (JEESR). 2021;19:95‐105.
Deep transfer learning for image classification | by Vegard Flovik | Towards Data Science. Accessed Jul. 09, 2023. [Online] https://towardsdatascience.com/deep‐transfer‐learning‐for‐image‐classification‐f3c7e0ec1a14.
Aliu AA, Ariff NRM, Ametefe DS, John D. Automatic classification and isolation of cracks on masonry surfaces using deep transfer learning and semantic segmentation. J Build Pathol Rehabil. 2023;8(1):1‐14. doi:10.1007/s41024‐023‐00274‐6.
Szentimrey ZA. Automated deep learning segmentation of neonatal cerebral lateral ventricles from three‐dimensional ultrasound images. 2021. Accessed March 07, 2024. [Online] https://hdl.handle.net/10214/26312.
Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2021;200:105897. doi:10.1016/J.CMPB.2020.105897.
Thanh TTP, Vununu C, Atoev S, Lee S‐H, Kwon K‐R. Leukemia blood cell image classification using convolutional neural network. Int J Comput Theory Eng. 2018;10(2):54‐58. doi:10.7763/ijcte.2018.v10.1198.
Shafique S, Tehsin S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat. 2018;17:1‐7. doi:10.1177/1533033818802789.
Ahmed N, Yigit A, Isik Z, Alpkocak A. Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics. 2019;9(3):104‐118. doi:10.3390/diagnostics9030104.
Matek C, Schwarz S, Spiekermann K, Marr C. Human‐level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat Mach Intell. 2019;1(11):538‐544. doi:10.1038/s42256‐019‐0101‐9.
Loey M, Naman M, Zayed H. Deep transfer learning in diagnosing leukemia in blood cells. Computers. 2020;9(2):29‐44. doi:10.3390/computers9020029.
Hao S et al. Multi‐threshold image segmentation using an enhanced fruit fly optimization for COVID‐19 X‐ray images. Biomed Signal Process Control. 2023;86:105147. doi:10.1016/J.BSPC.2023.105147.
Sakly H, Said M, Tagina M. Evaluation of the active contour and topographic watershed segmentation ‘assessment of the systolic ejection fraction in the left ventricular for medical assistance in 5D short axis cine MRI. Heliyon. 2020;6(11):e05547. doi:10.1016/J.HELIYON.2020.E05547.
Jaroš M, Strakoš P, Karásek T, et al. Implementation of K‐means segmentation algorithm on Intel Xeon phi and GPU: application in medical imaging. Adv Eng Software. 2017;103:21‐28. doi:10.1016/J.ADVENGSOFT.2016.05.008.
Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 1998;7(3):359‐369. doi:10.1109/83.661186.
Osher S, Sethian JA. Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton‐Jacobi formulations. J Comput Phys. 1988;79(1):12‐49. doi:10.1016/0021‐9991(88)90002‐2.
Vincent L, Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell. 1991;13(6):583‐598. doi:10.1109/34.87344.
Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process. 2001;10(2):266‐277. doi:10.1109/83.902291.
فهرسة مساهمة: Keywords: Chan‐Vese model; active contours; acute lymphoblastic leukaemia (ALL); blast cell; deep transfer learning
تواريخ الأحداث: Date Created: 20240510 Latest Revision: 20240510
رمز التحديث: 20240510
DOI: 10.1111/ijlh.14305
PMID: 38726705
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-553X
DOI:10.1111/ijlh.14305