دورية أكاديمية

Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish.

التفاصيل البيبلوغرافية
العنوان: Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish.
المؤلفون: Zoodsma JD; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA., Gomes CI; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA.; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA.; Department of Pediatrics, Stony Brook University, Stony Brook, NY, USA., Sirotkin HI; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA., Wollmuth LP; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA. lonnie.wollmuth@stonybrook.edu.; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA. lonnie.wollmuth@stonybrook.edu.; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA. lonnie.wollmuth@stonybrook.edu.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2799, pp. 243-255.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Zebrafish*/metabolism , Receptors, N-Methyl-D-Aspartate*/metabolism , Behavior, Animal*/drug effects, Animals ; Larva/metabolism ; Brain/metabolism ; Brain/drug effects ; High-Throughput Screening Assays/methods
مستخلص: Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Kinkhabwala A, Riley M, Koyama M, Monen J et al (2011) A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA 108:1164–1169. (PMID: 10.1073/pnas.1012185108211999473024665)
Yu M, Xi Y, Pollack J, Debiais-Thibaud M et al (2011) Activity of dlx5a/dlx6a regulatory elements during zebrafish GABAergic neuron development. Int J Dev Neurosci 29:681–691. (PMID: 10.1016/j.ijdevneu.2011.06.00521723936)
Mumm JS, Williams PR, Godinho L, Koerber A et al (2006) In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52:609–621. (PMID: 10.1016/j.neuron.2006.10.004171140461716713)
Vladimirov N, Mu Y, Kawashima T, Bennett DV et al (2014) Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods 11:883–884. (PMID: 10.1038/nmeth.304025068735)
Pozo-Morales M, Garteizgogeascoa I, Perazzolo C, So J et al (2023) In vivo imaging of calcium dynamics in zebrafish hepatocytes. Hepatology 77:789–801. (PMID: 10.1002/hep.3266335829917)
Hansen KB, Wollmuth LP, Bowie D, Furukawa H et al (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73:298–487. (PMID: 10.1124/pharmrev.120.000131347537948626789)
Amores A, Force A, Yan YL, Joly L et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714. (PMID: 10.1126/science.282.5394.17119831563)
Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234:756–766. (PMID: 10.1002/dvdy.2053216123982)
Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA et al (2022) Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 13:38. (PMID: 10.1186/s13229-022-00516-3361384319502958)
Zoodsma JD, Chan K, Bhandiwad AA, Golann DR et al (2020) A model to study NMDA receptors in early nervous system development. J Neurosci 40:3631–3645. (PMID: 10.1523/JNEUROSCI.3025-19.2020322458277189761)
Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. (PMID: 10.1016/j.coph.2014.11.00825498981)
XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physio 2:27–35. (PMID: 10.1016/j.cophys.2017.12.013)
Xu XX, Luo JH (2018) Mutations of N-methyl-D-aspartate receptor subunits in epilepsy. Neurosci Bull 34:549–565. (PMID: 10.1007/s12264-017-0191-529124671)
Garcia-Recio A, Santos-Gomez A, Soto D, Julia-Palacios N et al (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18. (PMID: 10.1002/humu.2414133252190)
Geisheker MR, Heymann G, Wang T, Coe BP et al (2017) Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 20:1043–1051. (PMID: 10.1038/nn.4589286281005539915)
Amin JB, Moody GR, Wollmuth LP (2021) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol 599:397–416. (PMID: 10.1113/JP27870532144935)
Ha S, Sohn IJ, Kim N, Sim HJ et al (2015) Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp Neurobiol 24:273–284. (PMID: 10.5607/en.2015.24.4.273267130764688328)
Pastorino GMG, Operto FF, Padovano C, Vivenzio V et al (2021) Social cognition in neurodevelopmental disorders and epilepsy. Front Neurol 12:658823. (PMID: 10.3389/fneur.2021.658823339359568079621)
Sison M, Gerlai R (2011) Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 220:331–337. (PMID: 10.1016/j.bbr.2011.02.019213336903072452)
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. (PMID: 10.1002/aja.10020303028589427)
Steindal SA, Torheim H, Oksholm T, Christensen VL et al (2019) Effectiveness of nursing interventions for breathlessness in people with chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Adv Nurs 75:927–945. (PMID: 10.1111/jan.1390230397940)
Liu X, Guo N, Lin J, Zhang Y et al (2014) Strain-dependent differential behavioral responses of zebrafish larvae to acute MK-801 treatment. Pharmacol Biochem Behav 127:82–89. (PMID: 10.1016/j.pbb.2014.11.00725449354)
Semmelhack JL, Donovan JC, Thiele TR, Kuehn E et al (2014) A dedicated visual pathway for prey detection in larval zebrafish. Elife 3:e04878. (PMID: 10.7554/eLife.04878254901544281881)
Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25:9294–9303. (PMID: 10.1523/JNEUROSCI.2678-05.2005162078896725764)
Oldfield CS, Grossrubatscher I, Chavez M, Hoagland A et al (2020) Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. Elife 9:e56619. (PMID: 10.7554/eLife.56619329859727561350)
Hu C, Chen W, Myers SJ, Yuan H et al (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132:115–121. (PMID: 10.1016/j.jphs.2016.10.002278180115125235)
Widmer FC, O’Toole SM, Keller GB (2022) NMDA receptors in visual cortex are necessary for normal visuomotor integration and skill learning. Elife 11:e71476. (PMID: 10.7554/eLife.71476351704298901170)
Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D et al (2016) Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron 89:725–733. (PMID: 10.1016/j.neuron.2015.12.039268331344766582)
Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539. (PMID: 10.1242/jeb.00393917601957)
Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci USA 108:15468–15473. (PMID: 10.1073/pnas.1107156108218761673174630)
Dreosti E, Lopes G, Kampff AR, Wilson SW (2015) Development of social behavior in young zebrafish. Front Neural Circuits 9:39. (PMID: 10.3389/fncir.2015.00039263476144539524)
Bruckner JJ, Stednitz SJ, Grice MZ, Zaidan D et al (2022) The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol 20:e3001838. (PMID: 10.1371/journal.pbio.3001838363185349624426)
Geng Y, Yates C, Peterson RT (2023) Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality. Cell Rep Methods 3:100381. (PMID: 10.1016/j.crmeth.2022.100381368148399939379)
Geng Y, Zhang T, Alonzo IG, Godar SC et al (2022) Top2a promotes the development of social behavior via PRC2 and H3K27me3. Sci Adv 8:eabm7069. (PMID: 10.1126/sciadv.abm7069364175279683714)
فهرسة مساهمة: Keywords: Learning; MK-801; Prey capture; Social behavior; Social interaction; Zebrafish
المشرفين على المادة: 0 (Receptors, N-Methyl-D-Aspartate)
تواريخ الأحداث: Date Created: 20240510 Date Completed: 20240510 Latest Revision: 20240702
رمز التحديث: 20240702
DOI: 10.1007/978-1-0716-3830-9_13
PMID: 38727911
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3830-9_13