دورية أكاديمية

Vaporized nicotine in utero results in reduced birthweight, increased locomotion, and decreased voluntary exercise, dependent on sex and diet in offspring.

التفاصيل البيبلوغرافية
العنوان: Vaporized nicotine in utero results in reduced birthweight, increased locomotion, and decreased voluntary exercise, dependent on sex and diet in offspring.
المؤلفون: Penman SL; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Roeder NM; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA.; Department of Psychology, University at Buffalo, Buffalo, NY, USA., Wang J; Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA., Richardson BJ; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Pareek O; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Freeman-Striegel L; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Mohr P; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Khan A; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA., Eiden RD; Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA, 16801, USA., Chakraborty S; Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA., Thanos PK; Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203-1016, USA. thanos@buffalo.edu.; Department of Psychology, University at Buffalo, Buffalo, NY, USA. thanos@buffalo.edu.
المصدر: Psychopharmacology [Psychopharmacology (Berl)] 2024 May 11. Date of Electronic Publication: 2024 May 11.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7608025 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2072 (Electronic) Linking ISSN: 00333158 NLM ISO Abbreviation: Psychopharmacology (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مستخلص: Rationale Clinical research has shown that prenatal exposure to nicotine may result in increased obesity risk later in life. Preclinical research has corroborated this finding, but few studies have investigated inhaled nicotine or the interaction with diet on obesity risk. Objective The aim of this study was to investigate the effects of prenatal nicotine exposure on both direct and indirect obesity measures, with both sex and diet as factors. Methods Pregnant rats were exposed to either vehicle or nicotine vapor (24 mg/mL or 59 mg/mL) throughout the entire gestational period. Offspring from each treatment group were given either a normal diet or a high fat diet starting at postnatal day 22. Caloric intake, body weight, spontaneous locomotion, sleep/wake activity, and voluntary exercise were measured throughout adolescence. Pregnancy weight gain and pup birthweights were collected to further measure developmental effects of prenatal nicotine exposure. Results Both maternal weight gain during pregnancy and pup weight at birth were decreased with prenatal nicotine exposure. Early adolescent males showed increased spontaneous activity in the open field following prenatal nicotine exposure compared to vehicle counterparts, particularly those given high-fat diet. Additionally, high dose nicotine prenatal treated males ran significantly less distance on the running wheel in late adolescence compared to vehicle counterparts, in the normal diet group only. Conclusion The results presented here show decreased birthweight, hyperactivity, and decreased voluntary exercise in adolescence following prenatal nicotine exposure in dose, sex, and diet dependent manners, which could lead to increased obesity risk in adulthood.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bastianini S, Lo Martire V, Alvente S, Berteotti C, Matteoli G, Rullo L, Stamatakos S, Silvani A, Candeletti S, Romualdi P, Cohen G, Zoccoli G (2021) Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice. Sci Rep 11(1):23897. https://doi.org/10.1038/s41598-021-03468-5. (PMID: 10.1038/s41598-021-03468-5349038458668915)
Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. (PMID: 10.1111/j.2517-6161.1995.tb02031.x)
Borniger JC, Don RF, Zhang N, Boyd RT, Nelson RJ (2017) Enduring effects of perinatal nicotine exposure on murine sleep in adulthood. Am J Physiol Regul Integr Comp Physiol 313(3):R280–r289. https://doi.org/10.1152/ajpregu.00156.2017. (PMID: 10.1152/ajpregu.00156.2017286376595625280)
Breit KR, Rodriguez CG, Hussain S, Thomas KJ, Zeigler M, Gerasimidis I, Thomas JD (2022) A model of combined exposure to Nicotine and Tetrahydrocannabinol via Electronic cigarettes in pregnant rats. Front Neurosci 16:866722. https://doi.org/10.3389/fnins.2022.866722. (PMID: 10.3389/fnins.2022.866722353682518966542)
Cardenas VM, Fischbach LA, Chowdhury P (2019) The use of electronic nicotine delivery systems during pregnancy and the reproductive outcomes: a systematic review of the literature. Tob Induc Dis 17:52. https://doi.org/10.18332/tid/104724. (PMID: 10.18332/tid/104724315829416770636)
Carias E, Fricke D, Vijayashanthar A, Smith L, Somanesan R, Martin C, Kalinowski L, Popoola D, Hadjiargyrou M, Komatsu DE, Thanos PK (2019) Weekday-only chronic oral methylphenidate self-administration in male rats: reversibility of the behavioral and physiological effects. Behav Brain Res 356:189–196. https://doi.org/10.1016/j.bbr.2018.08.014. (PMID: 10.1016/j.bbr.2018.08.01430149034)
Castanys-Muñoz E, Kennedy K, Castañeda-Gutiérrez E, Forsyth S, Godfrey KM, Koletzko B, Ozanne SE, Rueda R, Schoemaker M, van der Beek EM, van Buuren S, Ong KK (2017) Systematic review indicates postnatal growth in term infants born small-for-gestational-age being associated with later neurocognitive and metabolic outcomes. Acta Paediatr 106(8):1230–1238. https://doi.org/10.1111/apa.13868. (PMID: 10.1111/apa.13868283827225507303)
Chen H, Iglesias MA, Caruso V, Morris MJ (2011) Maternal cigarette smoke exposure contributes to glucose intolerance and decreased brain insulin action in mice offspring independent of maternal diet. PLoS ONE, 6(11), e27260.
Colman GJ, Joyce T (2003) Trends in smoking before, during, and after pregnancy in ten states. Am J Prev Med 24(1):29–35. https://doi.org/10.1016/s0749-3797(02)00574-3. (PMID: 10.1016/s0749-3797(02)00574-312554021)
computing. https://www.R-project.org/.
Cornelius ME, Wang TW, Jamal A, Loretan CG, Neff LJ (2020) Tobacco product use among adults - United States, 2019. MMWR Morb Mortal Wkly Rep 69(46):1736–1742. https://doi.org/10.15585/mmwr.mm6946a4. (PMID: 10.15585/mmwr.mm6946a4332116817676638)
Drake P, Driscoll AK, Mathews TJ (2018) Cigarette smoking during pregnancy: United States, 2016. NCHS Data Brief (305), 1–8.
Ernst M, Moolchan ET, Robinson ML (2001) Behavioral and neural consequences of prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatry 40(6):630–641. https://doi.org/10.1097/00004583-200106000-00007. (PMID: 10.1097/00004583-200106000-0000711392340)
Fan J, Zhang WX, Rao YS, Xue JL, Wang FF, Zhang L, Yan YE (2016) Perinatal nicotine exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. Endocrinology 157(11):4276–4286. https://doi.org/10.1210/en.2016-1269. (PMID: 10.1210/en.2016-126927589084)
Ferguson L, Giza CC, Serpa RO, Greco T, Robert H, Folkerts M, Prins ML (2021) Sex differences in neurophysiological changes following Voluntary Exercise in adolescent rats. Front Neurol 12:685822. https://doi.org/10.3389/fneur.2021.685822. (PMID: 10.3389/fneur.2021.685822343670528339288)
Frank MG, Srere H, Ledezma C, O’Hara B, Heller HC (2001) Prenatal nicotine alters vigilance states and AchR gene expression in the neonatal rat: implications for SIDS. Am J Physiol Regul Integr Comp Physiol 280(4):R1134–1140. https://doi.org/10.1152/ajpregu.2001.280.4.R1134. (PMID: 10.1152/ajpregu.2001.280.4.R113411247836)
Frie JA, Underhill J, Zhao B, de Guglielmo G, Tyndale RF, Khokhar JY (2020) OpenVape: an Open-Source E-Cigarette Vapor exposure device for rodents. eNeuro 7(5). https://doi.org/10.1523/eneuro.0279-20.2020.
Furlanetto KC, Mantoani LC, Bisca G, Morita AA, Zabatiero J, Proença M, Kovelis D, Pitta F (2014) Reduction of physical activity in daily life and its determinants in smokers without airflow obstruction. Respirology 19(3):369–375. https://doi.org/10.1111/resp.12236. (PMID: 10.1111/resp.1223624483840)
Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L (2013) Nicotine levels in electronic cigarettes. Nicotine Tob Res 15(1):158–166. https://doi.org/10.1093/ntr/nts103. (PMID: 10.1093/ntr/nts10322529223)
Greenwood BN, Fleshner M (2019) Voluntary Wheel running: a useful rodent model for investigating the mechanisms of stress robustness and neural circuits of Exercise Motivation. Curr Opin Behav Sci 28:78–84. https://doi.org/10.1016/j.cobeha.2019.02.001. (PMID: 10.1016/j.cobeha.2019.02.001327664117405855)
Hagnäs M, Cederberg H, Jokelainen J, Mikkola I, Rajala U, Keinänen-Kiukaanniemi S (2016) Association of maternal smoking during pregnancy with aerobic fitness of offspring in young adulthood: a prospective cohort study. BJOG: Int J Obstet Gynecol 123(11):1789–1795. https://doi.org/10.1111/1471-0528.13789. (PMID: 10.1111/1471-0528.13789)
Holloway A, Lim G, Petrik J, Foster W, Morrison K, Gerstein H (2005) Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia 48(12):2661–2666. (PMID: 10.1007/s00125-005-0022-516270195)
Huang L, Wang Y, Zhang L, Zheng Z, Zhu T, Qu Y, Mu D (2018) Maternal smoking and Attention-Deficit/Hyperactivity disorder in offspring: a Meta-analysis. Pediatrics 141(1). https://doi.org/10.1542/peds.2017-2465.
Hulman A, Lutsiv O, Park CK, Krebs L, Beyene J, McDonald SD (2016) Are women who quit smoking at high risk of excess weight gain throughout pregnancy? BMC Pregnancy Childbirth 16(1):263. https://doi.org/10.1186/s12884-016-1056-z. (PMID: 10.1186/s12884-016-1056-z275955845011923)
Hwang JW, Sundar IK, Yao H, Sellix MT, Rahman I (2014) Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. Faseb j 28(1):176–194. https://doi.org/10.1096/fj.13-232629. (PMID: 10.1096/fj.13-232629240257283868829)
Kataoka MC, Carvalheira APP, Ferrari AP, Malta MB, de Barros Leite Carvalhaes MA, de Lima Parada CMG (2018) Smoking during pregnancy and harm reduction in birth weight: a cross-sectional study. BMC Pregnancy Childbirth 18(1):67. https://doi.org/10.1186/s12884-018-1694-4. (PMID: 10.1186/s12884-018-1694-4295300155848535)
Keyworth H, Georgiou P, Zanos P, Rueda AV, Chen Y, Kitchen I, Camarini R, Cropley M, Bailey A (2018) Wheel running during chronic nicotine exposure is protective against mecamylamine-precipitated withdrawal and up-regulates hippocampal α7 nACh receptors in mice. Br J Pharmacol 175(11):1928–1943. https://doi.org/10.1111/bph.14068. (PMID: 10.1111/bph.1406829266170)
King E, Campbell A, Belger A, Grewen K (2018) Prenatal nicotine exposure disrupts infant neural markers of Orienting. Nicotine Tob Res 20(7):897–902. https://doi.org/10.1093/ntr/ntx177. (PMID: 10.1093/ntr/ntx17729059450)
Lallai V, Manca L, Sherafat Y, Fowler CD (2022) Effects of prenatal nicotine, THC, or co-exposure on cognitive behaviors in adolescent male and female rats. Nicotine Tob Res 24(8):1150–1160. https://doi.org/10.1093/ntr/ntac018. (PMID: 10.1093/ntr/ntac018350901749278841)
Lenth R (2022) emmeans: Estimated Marginal Means, aka Least-Squares Means. In (Version 1.8.2) R package. https://CRAN.R-project.org/package=emmeans.
Levin ED (2005) Fetal nicotinic overload, blunted sympathetic responsivity, and obesity. Birth Defects Res Clin Mol Teratol 73(7):481–484. https://doi.org/10.1002/bdra.20162. (PMID: 10.1002/bdra.20162)
Lindström L, Wikström A-K, Bergman E, Mulic-Lutvica A, Högberg U, Ahlsson F, Lundgren M (2019) Postnatal growth in children born small for gestational age with and without smoking mother. Pediatr Res 85(7):961–966. https://doi.org/10.1038/s41390-019-0352-5. (PMID: 10.1038/s41390-019-0352-530808020)
Maessen SE, Ahlsson F, Lundgren M, Cutfield WS, Derraik JGB (2019) Maternal smoking early in pregnancy is associated with increased risk of short stature and obesity in adult daughters. Sci Rep 9(1):4290. https://doi.org/10.1038/s41598-019-39006-7. (PMID: 10.1038/s41598-019-39006-7308629636414646)
Martin C, Fricke D, Vijayashanthar A, Lowinger C, Koutsomitis D, Popoola D, Hadjiargyrou M, Komatsu DE, Thanos PK (2018) Recovery from behavior and developmental effects of chronic oral methylphenidate following an abstinence period. Pharmacol Biochem Behav 172:22–32. https://doi.org/10.1016/j.pbb.2018.07.001. (PMID: 10.1016/j.pbb.2018.07.001300301276319957)
Møller SE, Ajslev TA, Andersen CS, Dalgård C, Sørensen TI (2014a) Risk of childhood overweight after exposure to tobacco smoking in prenatal and early postnatal life. PLoS ONE 9(10):e109184. https://doi.org/10.1371/journal.pone.0109184. (PMID: 10.1371/journal.pone.0109184253108244195647)
Møller SE, Ajslev TA, Andersen CS, Dalgård C, Sørensen TIA (2014b) Risk of Childhood overweight after exposure to Tobacco Smoking in prenatal and early postnatal life. PLoS ONE 9(10):e109184. https://doi.org/10.1371/journal.pone.0109184. (PMID: 10.1371/journal.pone.0109184253108244195647)
Montanari C, Kelley LK, Kerr TM, Cole M, Gilpin NW (2020) Nicotine e-cigarette vapor inhalation effects on nicotine & cotinine plasma levels and somatic withdrawal signs in adult male Wistar rats. Psychopharmacology 237(3):613–625. https://doi.org/10.1007/s00213-019-05400-2. (PMID: 10.1007/s00213-019-05400-231760460)
Morris CV, DiNieri JA, Szutorisz H, Hurd YL (2011) Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment. Eur J Neurosci 34(10):1574–1583. https://doi.org/10.1111/j.1460-9568.2011.07884.x. (PMID: 10.1111/j.1460-9568.2011.07884.x221034153226730)
Nagahara AH, Handa RJ (1999) Loss of nicotine-induced effects on locomotor activity in fetal alcohol-exposed rats. Neurotoxicol Teratol 21(6):647–652. https://doi.org/10.1016/s0892-0362(99)00040-9. (PMID: 10.1016/s0892-0362(99)00040-910560771)
Nemoto T, Ando H, Nagao M, Kakinuma Y, Sugihara H (2021) Prenatal nicotine exposure induces low birthweight and hyperinsulinemia in male rats. Front Endocrinol (Lausanne) 12:694336. https://doi.org/10.3389/fendo.2021.694336. (PMID: 10.3389/fendo.2021.69433634177815)
O’Callaghan F, O’Callaghan M, Scott JG, Najman J, Al Mamun A (2019) Effect of maternal smoking in pregnancy and childhood on child and adolescent sleep outcomes to 21 years: a birth cohort study. BMC Pediatr 19(1):70. https://doi.org/10.1186/s12887-019-1439-1. (PMID: 10.1186/s12887-019-1439-1308418826402153)
Oken E, Levitan EB, Gillman MW (2008) Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes 32(2):201–210. https://doi.org/10.1038/sj.ijo.0803760. (PMID: 10.1038/sj.ijo.0803760)
Omaiye EE, McWhirter KJ, Luo W, Pankow JF, Talbot P (2019) High-nicotine electronic cigarette products: toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some Flavor Chemical concentrations. Chem Res Toxicol 32(6):1058–1069. https://doi.org/10.1021/acs.chemrestox.8b00381. (PMID: 10.1021/acs.chemrestox.8b00381308969366579667)
Omotoso GO, Kadir RE, Sulaimon A, Jaji-Sulaimon F, R., Gbadamosi IT (2018a) Prenatal exposure to Gestational Nicotine before Neurulation is detrimental to Neurodevelopment of Wistar rats’ offspring. Malaysian J Med Sci 25(5):35–47. https://doi.org/10.21315/mjms2018.25.5.4. (PMID: 10.21315/mjms2018.25.5.4)
Omotoso GO, Kadir RE, Sulaimon FA, Jaji-Sulaimon R, Gbadamosi IT (2018b) Prenatal exposure to Gestational Nicotine before Neurulation is detrimental to Neurodevelopment of Wistar rats’ offspring. Malays J Med Sci 25(5):35–47. https://doi.org/10.21315/mjms2018.25.5.4. (PMID: 10.21315/mjms2018.25.5.4309148616419881)
Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320(7240):967–971. https://doi.org/10.1136/bmj.320.7240.967. (PMID: 10.1136/bmj.320.7240.9671075314727335)
Peters DA, Tang S (1982) Sex-dependent biological changes following prenatal nicotine exposure in the rat. Pharmacol Biochem Behav 17(5):1077–1082. https://doi.org/10.1016/0091-3057(82)90497-x. (PMID: 10.1016/0091-3057(82)90497-x7178200)
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT (2020) Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 195:172951. https://doi.org/10.1016/j.pbb.2020.172951. (PMID: 10.1016/j.pbb.2020.17295132439454)
Qureshi R, Jadotte Y, Zha P, Porter SA, Holly C, Salmond S, Watkins EA (2018) The association between prenatal exposure to environmental tobacco smoke and childhood obesity: a systematic review. JBI Evid Synthesis, 16(8). https://journals.lww.com/jbisrir/Fulltext/2018/08000/The_association_between_prenatal_exposure_to.9.aspx.
Rayfield S, Plugge E (2017) Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health 71(2):162–173. https://doi.org/10.1136/jech-2016-207376. (PMID: 10.1136/jech-2016-20737627480843)
Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam CY, Mauceri A, Vitale M, Lee J, Paeng S, Komatsu DE, Hadjiargyrou M, Thanos PK (2017) Sex differences in the physiological and behavioral effects of chronic oral methylphenidate treatment in rats. Front Behav Neurosci 11:53. https://doi.org/10.3389/fnbeh.2017.00053. (PMID: 10.3389/fnbeh.2017.00053284007225368228)
Roeder NM, Mihalkovic A, Richardson BJ, Penman SL, Novalen M, Hammond N, Eiden R, Khokhar JY, Tyndale RF, Thanos PK (2023) Behavioral and pharmacokinetic assessment of nicotine e-cigarette inhalation in female rats. Nicotine Tob Res. https://doi.org/10.1093/ntr/ntad240. (PMID: 10.1093/ntr/ntad24038092656)
Rogers JM (2019) Smoking and pregnancy: epigenetics and developmental origins of the metabolic syndrome. Birth Defects Res 111(17):1259–1269. https://doi.org/10.1002/bdr2.1550. (PMID: 10.1002/bdr2.1550313134996964018)
Romero RD, Chen WJ (2004) Gender-related response in open-field activity following developmental nicotine exposure in rats. Pharmacol Biochem Behav 78(4):675–681. https://doi.org/10.1016/j.pbb.2004.04.033. (PMID: 10.1016/j.pbb.2004.04.03315301921)
SAMHSA (2022) Key substance use and mental health indicators in the United States: Results from the 2021 National Survey on Drug Use and Health https://www.samhsa.gov/data/report/2021-nsduh-annual-national-report.
Santiago SE, Huffman KJ (2012) Postnatal effects of prenatal nicotine exposure on body weight, brain size and cortical connectivity in mice. Neurosci Res 73(4):282–291. https://doi.org/10.1016/j.neures.2012.05.005. (PMID: 10.1016/j.neures.2012.05.00522626859)
Sawnani H, Jackson T, Murphy T, Beckerman R, Simakajornboon N (2004) The effect of maternal smoking on respiratory and arousal patterns in Preterm infants during Sleep. Am J Respir Crit Care Med 169(6):733–738. https://doi.org/10.1164/rccm.200305-692OC. (PMID: 10.1164/rccm.200305-692OC14684558)
Schneider T, Bizarro L, Asherson PJ, Stolerman IP (2012) Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology 223(4):401–415. https://doi.org/10.1007/s00213-012-2728-7. (PMID: 10.1007/s00213-012-2728-7225625244765091)
Smith AM, Dwoskin LP, Pauly JR (2010) Early exposure to nicotine during critical periods of brain development: mechanisms and consequences. J Pediatr Biochem 1(2):125–141. https://doi.org/10.3233/jpb-2010-0012. (PMID: 10.3233/jpb-2010-0012249047084042244)
Somm E, Schwitzgebel VM, Vauthay DM, Camm EJ, Chen CY, Giacobino JP, Sizonenko SV, Aubert ML, Hüppi PS (2008) Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 149(12):6289–6299. https://doi.org/10.1210/en.2008-0361. (PMID: 10.1210/en.2008-036118687784)
Sourander A, Sucksdorff M, Chudal R, Surcel HM, Hinkka-Yli-Salomäki S, Gyllenberg D, Cheslack-Postava K, Brown AS (2019) Prenatal cotinine levels and ADHD among offspring. Pediatrics 143(3). https://doi.org/10.1542/peds.2018-3144.
Stéphan-Blanchard E, Telliez F, Léké A, Djeddi D, Bach V, Libert JP, Chardon K (2008) The influence of in utero exposure to smoking on sleep patterns in preterm neonates. Sleep 31(12):1683–1689. https://doi.org/10.1093/sleep/31.12.1683. (PMID: 10.1093/sleep/31.12.1683190903242603491)
Stone KC, LaGasse LL, Lester BM, Shankaran S, Bada HS, Bauer CR, Hammond JA (2010) Sleep problems in children with prenatal substance exposure: the maternal lifestyle study. Arch Pediatr Adolesc Med 164(5):452–456. https://doi.org/10.1001/archpediatrics.2010.52. (PMID: 10.1001/archpediatrics.2010.52204397962917192)
Sun D, Zhou T, Li X, Ley SH, Heianza Y, Qi L (2020) Maternal smoking, genetic susceptibility, and birth-to-adulthood body weight. Int J Obes (Lond) 44(6):1330–1340. https://doi.org/10.1038/s41366-019-0509-7. (PMID: 10.1038/s41366-019-0509-731857670)
Tarasi B, Cornuz J, Clair C, Baud D (2022) Cigarette smoking during pregnancy and adverse perinatal outcomes: a cross-sectional study over 10 years. BMC Public Health 22(1):2403. https://doi.org/10.1186/s12889-022-14881-4. (PMID: 10.1186/s12889-022-14881-4365440929773571)
Team RC (2022) R: A language and environment for statistical.
Tizabi Y, Popke EJ, Rahman MA, Nespor SM, Grunberg NE (1997) Hyperactivity induced by prenatal nicotine exposure is associated with an increase in cortical nicotinic receptors. Pharmacol Biochem Behav 58(1):141–146. https://doi.org/10.1016/s0091-3057(96)00461-3. (PMID: 10.1016/s0091-3057(96)00461-39264082)
Tizabi Y, Russell LT, Nespor SM, Perry DC, Grunberg NE (2000) Prenatal nicotine exposure: effects on locomotor activity and central [125I]alpha-BT binding in rats. Pharmacol Biochem Behav 66(3):495–500. https://doi.org/10.1016/s0091-3057(00)00171-4. (PMID: 10.1016/s0091-3057(00)00171-410899361)
Vaglenova J, Birru S, Pandiella NM, Breese CR (2004) An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behav Brain Res 150(1–2):159–170. https://doi.org/10.1016/j.bbr.2003.07.005. (PMID: 10.1016/j.bbr.2003.07.00515033289)
Wang R, Martin CD, Lei AL, Hausknecht KA, Ishiwari K, Richards JB, Haj-Dahmane S, Shen RY (2020) Prenatal ethanol exposure leads to attention deficits in both male and female rats. Front Neurosci 14:12. https://doi.org/10.3389/fnins.2020.00012. (PMID: 10.3389/fnins.2020.00012320381566992663)
Wells JC (2007) The thrifty phenotype as an adaptive maternal effect. Biol Rev Camb Philos Soc 82(1):143–172. https://doi.org/10.1111/j.1469-185X.2006.00007.x. (PMID: 10.1111/j.1469-185X.2006.00007.x17313527)
Wen X, Eiden RD, Justicia-Linde FE, Wang Y, Higgins ST, Thor N, Haghdel A, Peters AR, Epstein LH (2019) A multicomponent behavioral intervention for smoking cessation during pregnancy: a nonconcurrent multiple-baseline design. Transl Behav Med 9(2):308–318. https://doi.org/10.1093/tbm/iby027. (PMID: 10.1093/tbm/iby02729648615)
White O, Roeder N, Blum K, Eiden RD, Thanos PK (2022) Prenatal effects of Nicotine on obesity risks: a narrative review. Int J Environ Res Public Health 19(15). https://doi.org/10.3390/ijerph19159477.
Whittington JR, Simmons PM, Phillips AM, Gammill SK, Cen R, Magann EF, Cardenas VM (2018) The use of electronic cigarettes in pregnancy: a review of the literature. Obstet Gynecol Surv 73(9):544–549. https://doi.org/10.1097/ogx.0000000000000595. (PMID: 10.1097/ogx.000000000000059530265741)
Wickham H (2019) Welcome to the Tidyverse. J Open Source Softw. https://doi.org/10.21105/joss.01686. (PMID: 10.21105/joss.01686)
Yochum C, Doherty-Lyon S, Hoffman C, Hossain MM, Zelikoff JT, Richardson JR (2014) Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: role of altered catecholamines and BDNF. Exp Neurol 254:145–152. https://doi.org/10.1016/j.expneurol.2014.01.016. (PMID: 10.1016/j.expneurol.2014.01.016244868513982151)
معلومات مُعتمدة: DA045640 United States NH NIH HHS
فهرسة مساهمة: Keywords: Activity; Development; Nicotine; Obesity risk; Prenatal; Vapor inhalation
تواريخ الأحداث: Date Created: 20240511 Latest Revision: 20240511
رمز التحديث: 20240512
DOI: 10.1007/s00213-024-06602-z
PMID: 38733527
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2072
DOI:10.1007/s00213-024-06602-z