دورية أكاديمية

Biological invasions are a population-level rather than a species-level phenomenon.

التفاصيل البيبلوغرافية
العنوان: Biological invasions are a population-level rather than a species-level phenomenon.
المؤلفون: Haubrock PJ; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.; Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait., Soto I; Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic., Ahmed DA; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait., Ansari AR; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait., Tarkan AS; Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey.; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK., Kurtul I; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK.; Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey., Macêdo RL; Institute of Biology, Freie Universität Berlin, Berlin, Germany.; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.; Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil., Lázaro-Lobo A; Biodiversity Research Institute IMIB (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Spain., Toutain M; Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France., Parker B; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK., Błońska D; Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK., Guareschi S; Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy., Cano-Barbacil C; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany., Dominguez Almela V; School of Geography and Environmental Sciences, University of Southampton, Southampton, UK., Andreou D; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK., Moyano J; Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina., Akalın S; Faculty of Fisheries, Marine and Inland Waters Sciences and Technology Department, Ege University, İzmir, Turkey., Kaya C; Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey., Bayçelebi E; Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey., Yoğurtçuoğlu B; Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey., Briski E; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany., Aksu S; Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey., Emiroğlu Ö; Department of Biology, Faculty of Arts and Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey., Mammola S; Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy.; NBFC, National Biodiversity Future Center, Palermo, Italy.; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland., De Santis V; Water Research Institute, National Research Council (CNR-IRSA), Verbania Pallanza, Italy., Kourantidou M; Université de Bretagne Occidentale, AMURE, Plouzané, France., Pincheira-Donoso D; School of Biological Sciences, Queen's University Belfast, Belfast, UK., Britton JR; Department of Life and Environmental Sciences, Bournemouth University, Poole, UK., Kouba A; Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic., Dolan EJ; School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK., Kirichenko NI; Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk, Russia.; Siberian Federal University, Krasnoyarsk, Russia.; All-Russian Plant Quarantine Center, Krasnoyarsk Branch, Krasnoyarsk, Russia., García-Berthou E; GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain., Renault D; Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 11 6553, Rennes, France., Fernandez RD; Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, Yerba Buena, Argentina., Yapıcı S; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey., Giannetto D; Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Mugla, Turkey., Nuñez MA; Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA., Hudgins EJ; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia., Pergl J; Institute of Botany; Department of Invasion Ecology, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic., Milardi M; Southern Indian Ocean Fisheries Agreement (SIOFA), Le Port, La Reunion, France., Musolin DL; European and Mediterranean Plant Protection Organization (EPPO), Paris, France., Cuthbert RN; School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
المصدر: Global change biology [Glob Chang Biol] 2024 May; Vol. 30 (5), pp. e17312.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Introduced Species* , Invertebrates*/physiology , Population Dynamics*, Animals ; Europe ; Ecosystem ; Fresh Water
مستخلص: Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.
(© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
References: Aksu, S., Başkurt, S., Emiroğlu, Ö., & Tarkan, A. S. (2021). Establishment and range expansion of non‐native fish species are facilitated by hot springs: The case of upper Sakarya Basin (NW, Turkey). Oceanological and Hydrobiological Studies, 50, 247–258. https://doi.org/10.1016/j.jcz.2019.10.002.
Almond, R. E. A., Grooten, M., & Petersen, T. (Eds.). (2020). Living planet report 2020—Bending the curve of biodiversity loss. WWF.
Altwegg, R., Collingham, Y. C., Erni, B., & Huntley, B. (2013). Density‐dependent dispersal and the speed of range expansions. Diversity and Distributions, 19(1), 60–68. https://doi.org/10.1111/j.1472‐4642.2012.00943.x.
Bacher, S., Galil, B. S., Nuñez, M. A., Ansong, M., Cassey, P., Dehnen‐Schmutz, K., Fayvush, G., Hiremath, A. J., Ikegami, M., Martinou, A. F., McDermott, S. M., Preda, C., Vilà, M., Weyl, O. L. F., Fernandez, R. D., & Ryan‐Colton, E. (2023). Chapter 4: Impacts of biological invasions on nature, nature's contributions to people, and good quality of life. In H. E. Roy, A. Pauchard, P. Stoett, & T. Renard Truong (Eds.), Thematic assessment report on invasive alien species and their control of the intergovernmental science‐policy platform on biodiversity and ecosystem services. IPBES Secretariat. https://doi.org/10.5281/zenodo.7430731.
Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics, 19, 10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002.
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333–339. https://doi.org/10.1016/j.tree.2011.03.023.
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183–192. https://doi.org/10.1016/j.tree.2011.01.009.
Bolnick, D. I., & Doebeli, M. (2003). Sexual dimorphism and adaptive speciation: Two sides of the same ecological coin. Evolution, 57(11), 2433–2449. https://doi.org/10.1111/j.0014‐3820.2003.tb01489.x.
Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003). The ecology of individuals: Incidence and implications of individual specialization. The American Naturalist, 161(1), 1–28. https://doi.org/10.1086/343878.
Booy, O., Robertson, P. A., Moore, N., Ward, J., Roy, H. E., Adriaens, T., Shaw, R., van Valkenburg, J., Wyn, G., Bertolino, S., Blight, O., Branquart, E., Brundu, G., Caffrey, J., Capizzi, D., Casaer, J., de Clerck, O., Coughlan, N. E., Davis, E., … Mill, A. C. (2020). Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. Global Change Biology, 26(11), 6235–6250. https://doi.org/10.1111/gcb.15280.
Borden, J. B., & Flory, S. L. (2021). Urban evolution of invasive species. Frontiers in Ecology and the Environment, 19(3), 184–191. https://doi.org/10.1002/fee.2295.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta‐analysis. John Wiley & Sons Ltd.
Borenstein, M., Higgins, J. P., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta‐analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.org/10.1002/jrsm.1230.
Bradley, B. A., Laginhas, B. B., Whitlock, R., Allen, J. M., Bates, A. E., Bernatchez, G., Diez, J. M., Early, R., Lenoir, J., Vilà, M., & Sorte, C. J. (2019). Disentangling the abundance–impact relationship for invasive species. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9919–9924. https://doi.org/10.1073/pnas.1818081116.
Briski, E., Bailey, S. A., Casas‐Monroy, O., DiBacco, C., Kaczmarska, I., Levings, C., MacGillivary, M. L., McKindsey, C. W., Nasmith, L. E., Parenteau, M., Piercey, G. E., Rochon, A., Roy, S., Simard, N., Villac, M. C., Weise, A. M., & MacIsaac, H. J. (2012). Relationship between propagule pressure and colonization pressure in invasion ecology: A test with ships' ballast. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2990–2997. https://doi.org/10.1098/rspb.2011.2671.
Briski, E., Chan, F., MacIsaac, H. J., & Bailey, S. A. (2014). A conceptual model of community dynamics during the transport stage of the invasion process: A case study of ships' ballast. Diversity and Distributions, 20, 236–244. https://doi.org/10.1111/ddi.12154.
Briski, E., Chan, F. T., Darling, J. A., Lauringson, V., MacIsaac, H. J., Zhan, A., & Bailey, S. A. (2018). Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Frontiers in Ecology and the Environment, 16(6), 345–353. https://doi.org/10.1002/fee.1820.
Briski, E., Drake, D. A. R., Chan, F. T., Bailey, S. A., & MacIsaac, H. J. (2014). Variation in propagule and colonization pressures following rapid human‐mediated transport: Implications for a universal assemblage‐based management model. Limnology and Oceanography, 59(6), 2068–2076. https://doi.org/10.4319/lo.2014.59.6.2068.
Byers, J. E., & Noonburg, E. G. (2003). Scale dependent effects of biotic resistance to biological invasion. Ecology, 84(6), 1428–1433.
Capellini, I., Baker, J., Allen, W. L., Street, S. E., & Venditti, C. (2015). The role of life history traits in mammalian invasion success. Ecology Letters, 18(10), 1099–1107. https://doi.org/10.1111/ele.12493.
Catford, J. A., Jansson, R., & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 22–40. https://doi.org/10.1111/j.1472‐4642.2008.00521.x.
Catford, J. A., Smith, A. L., Wragg, P. D., Clark, A. T., Kosmala, M., Cavender‐Bares, J., Reich, P. B., & Tilman, D. (2019). Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long‐term grassland experiment. Ecology Letters, 22, 593–604. https://doi.org/10.1111/ele.13220.
Chamberlain, S., Oldoni, D., & Waller, J. (2022). rgbif: Interface to the Global Biodiversity Information Facility API. R package Version 3.7.9. https://CRAN.R‐project.org/package=rgbif.
Clobert, J., Le Galliard, J.‐F., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12(3), 197–209. https://doi.org/10.1111/j.1461‐0248.2008.01267.x.
Colautti, R. I., & MacIsaac, H. J. (2004). A neutral terminology to define ‘invasive’ species. Diversity and Distributions, 10(2), 135–141. https://doi.org/10.1111/j.1366‐9516.2004.00061.x.
Copp, G. H., Vilizzi, L., Tidbury, H., Stebbing, P. D., Tarkan, A. S., Miossec, L., & Goulletquer, P. (2016). Development of a generic decision‐support tool for identifying potentially invasive aquatic taxa: AS‐ISK. Management of Biological Invasions, 7(4), 343–350. https://doi.org/10.3391/mbi.2016.7.4.04.
Crooks, J. A. (2005). Lag times and exotic species: The ecology and management of biological invasions in slow‐motion. Écoscience, 12(3), 316–329. https://doi.org/10.2980/i1195‐6860‐12‐3‐316.1.
Crystal‐Ornelas, R., & Lockwood, J. L. (2020). The ‘known unknowns’ of invasive species impact measurement. Biological Invasions, 22, 1513–1525. https://doi.org/10.1007/s10530‐020‐02200‐0.
Cuthbert, R. N., Darriet, F., Chabrerie, O., Lenoir, J., Courchamp, F., Claeys, C., Robert, V., & Renault, D. (2023). Invasive hematophagous arthropods and associated diseases in a changing world. Parasites & Vectors, 16, 291. https://doi.org/10.1186/s13071‐023‐05887‐x.
Daly, E. Z., Chabrerie, O., Massol, F., Facon, B., Hess, M. C. M., Tasiemski, A., Grandjean, F., Chauvat, M., Viard, F., Forey, E., Folcher, L., Buisson, E., Boivin, T., Baltora‐Rosset, S., Ulmer, R., Gibert, P., Thiébaut, G., Pantel, J. H., Heger, T., … Renault, D. (2023). A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos, 2023, e09645. https://doi.org/10.1111/oik.09645.
Damas‐Moreira, I., Riley, J. L., Harris, D. J., & Whiting, M. J. (2019). Can behaviour explain invasion success? A comparison between sympatric invasive and native lizards. Animal Behaviour, 151, 195–202.
Diagne, C., Leroy, B., Vaissière, A. C., Gozlan, R. E., Roiz, D., Jarić, I., & Courchamp, F. (2021). High and rising economic costs of biological invasions worldwide. Nature, 592(7855), 571–576. https://doi.org/10.1038/s41586‐021‐03405‐6.
Diekmann, O. (1993). An invitation to structured (meta)population models. In S. A. Levin, T. M. Powell, & J. W. Steele (Eds.), Patch dynamics (Vol. 96). Springer. https://doi.org/10.1007/978‐3‐642‐50155‐5_12.
Dietze, M. C., Fox, A., Beck‐Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., & White, E. P. (2018). Iterative near‐term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 115(7), 1424–1432. https://doi.org/10.1073/pnas.1710231115.
Dominguez Almela, V., Palmer, S. C., Andreou, D., Gillingham, P. K., Travis, J. M., & Britton, J. R. (2022). Predicting the influence of river network configuration, biological traits and habitat quality interactions on riverine fish invasions. Diversity and Distributions, 28(2), 257–270. https://doi.org/10.1111/ddi.13459.
Dominguez Almela, V., Palmer, S. C., Gillingham, P. K., Travis, J. M., & Britton, J. R. (2020). Integrating an individual‐based model with approximate Bayesian computation to predict the invasion of a freshwater fish provides insights into dispersal and range expansion dynamics. Biological Invasions, 22, 1461–1480. https://doi.org/10.1007/s10530‐020‐02197‐6.
Drake, J. M. (2004). Allee effects and the risk of biological invasion. Risk Analysis: An International Journal, 24(4), 795–802. https://doi.org/10.1111/j.0272‐4332.2004.00479.x.
Dudgeon, D. (2019). Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology, 29(19), R960–R967.
Emiroğlu, Ö., Aksu, S., Başkurt, S., Britton, J. R., & Tarkan, A. S. (2023). Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 25, 1907–1920. https://doi.org/10.1007/s10530‐023‐03016‐4.
Emlen, D. J., & Zimmer, C. (2019). Evolution: Making sense of life (3rd ed.). W. H. Freeman and Company.
Falaschi, M., Melotto, A., Manenti, R., & Ficetola, G. F. (2020). Invasive species and amphibian conservation. Herpetologica, 76(2), 216–227. https://doi.org/10.1655/0018‐0831‐76.2.216.
Friesen, C. R., & Shine, R. (2019). At the invasion front, male cane toads (Rhinella marina) have smaller testes. Biology Letters, 15(7), 20190339. https://doi.org/10.1098/rsbl.2019.0339.
Geburzi, J. C., & McCarthy, M. L. (2018). How do they do it?—Understanding the success of marine invasive species. In S. Jungblut, V. Liebich, & M. Bode (Eds.), YOUMARES 8—Oceans across boundaries: Learning from each other. Springer. https://doi.org/10.1007/978‐3‐319‐93284‐2_8.
Goldberg, E. E., Lynch, H. J., Neubert, M. G., & Fagan, W. F. (2010). Effects of branching spatial structure and life history on the asymptotic growth rate of a population. Theoretical Ecology, 3, 137–152. https://doi.org/10.1007/s12080‐009‐0058‐0.
Grabowska, J., & Przybylski, M. (2015). Life‐history traits of non‐native freshwater fish invaders differentiate them from natives in the Central European bioregion. Reviews in Fish Biology and Fisheries, 25, 165–178. https://doi.org/10.1007/s11160‐014‐9375‐5.
Guareschi, S., Laini, A., England, J., Barrett, J., & Wood, P. J. (2021). Multiple co‐occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 31(6), e02385. https://doi.org/10.1002/eap.2385.
Guareschi, S., Wood, P. J., England, J., Barrett, J., & Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities' invasibility. River Research and Applications, 38(8), 1374–1386. https://doi.org/10.1002/rra.3975.
Haase, P., Bowler, D. E., Baker, N. J., Bonada, N., Domisch, S., Garcia Marquez, J. R., Heino, J., Hering, D., Jähnig, S. C., Schmidt‐Kloiber, A., Stubbington, R., Altermatt, F., Álvarez‐Cabria, M., Amatulli, G., Angeler, D. G., Archambaud‐Suard, G., Jorrín, I. A., Aspin, T., Azpiroz, I., … Welti, E. A. (2023). The recovery of European freshwater biodiversity has come to a halt. Nature, 620(7974), 582–588. https://doi.org/10.1038/s41586‐023‐06400‐1.
Hamed, K. H., & Rao, A. R. (1998). A modified Mann‐Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. https://doi.org/10.1016/S0022‐1694(97)00125‐X.
Harvey, R. G., & Mazzotti, F. J. (2016). The invasion curve: A tool for understanding invasive species Management in South Florida. Publication no. WEC‐347. Institute of Food and Agricultural Sciences, University of Florida.
Haubrock, P. J., Ahmed, D. A., Cuthbert, R. N., Stubbington, R., Domisch, S., Marquez, J. R., Beidas, A., Amatulli, G., Kiesel, J., Shen, L. Q., Soto, I., Angeler, D. G., Bonada, N., Cañedo‐Argüelles, M., Csabai, Z., Datry, T., de Eyto, E., Dohet, A., Drohan, E., … Haase, P. (2022). Invasion impacts and dynamics of a European‐wide introduced species. Global Change Biology, 28(15), 4620–4632. https://doi.org/10.1111/gcb.16207.
Haubrock, P. J., Carneiro, L., Macêdo, R. L., Balzani, P., Soto, I., Rasmussen, J. J., Wiberg‐Larsen, P., Csabai, Z., Várbíró, G., Murphy, J. F., Jones, J. I., Verdonschot, R. C. M., Verdonschot, P., van der Lee, G., & Ahmed, D. A. (2023). Advancing our understanding of biological invasions with long‐term biomonitoring data. Biological Invasions, 25(11), 3637–3649. https://doi.org/10.1007/s10530‐023‐03141‐0.
Haubrock, P. J., Inghilesi, A. F., Mazza, G., Bendoni, M., Solari, L., & Tricarico, E. (2019). Burrowing activity of Procambarus clarkii on levees: Analysing behaviour and burrow structure. Wetlands Ecology and Management, 27, 497–511.
Haubrock, P. J., Pilotto, F., Soto, I., Kühn, I., Verreycken, H., Seebens, H., Cuthbert, R. N., & Haase, P. (2023). Long‐term trends in abundances of non‐native species across biomes, realms, and taxonomic groups in Europe. Science of the Total Environment, 884, 163808. https://doi.org/10.1016/j.scitotenv.2023.163808.
Haubrock, P. J., & Soto, I. (2023). Valuing the information hidden in true long‐term data for invasion science. Biological Invasions, 25, 2385–2394. https://doi.org/10.1007/s10530‐023‐03091‐7.
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: Challenges for the future. Hydrobiologia, 750, 147–170. https://doi.org/10.1007/s10750‐014‐2166‐0.
Hayes, K. R., & Barry, S. C. (2008). Are there any consistent predictors of invasion success? Biological Invasions, 10, 483–506. https://doi.org/10.1007/s10530‐007‐9146‐5.
Heger, T., Jeschke, J. M., & Kollmann, J. (2021). Some reflections on current invasion science and perspectives for an exciting future. NeoBiota, 68, 79–100. https://doi.org/10.3897/neobiota.68.68997.
Hufbauer, R. A., Facon, B., Ravigné, V., Turgeon, J., Foucaud, J., Lee, C. E., Rey, O., & Estoup, A. (2012). Anthropogenically induced adaptation to invade (AIAI): Contemporary adaptation to human‐altered habitats within the native range can promote invasions. Evolutionary Applications, 5(1), 89–101. https://doi.org/10.1111/j.1752‐4571.2011.00211.x.
Hughes, A. C., & Grumbine, R. E. (2023). The Kunming‐Montreal global biodiversity framework: What it does and does not do, and how to improve it. Frontiers in Environmental Science, 11, 1281536. https://doi.org/10.3389/fenvs.2023.1281536.
Hui, C., & Richardson, D. M. (2017). Invasion dynamics. Oxford University Press.
Hulme, P. E. (2017). Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92(3), 1297–1313. https://doi.org/10.1111/brv.12282.
IPCC. (2005). Guidance notes for lead authors of the IPCC fourth assessment report on addressing uncertainties. Intergovernmental Panel on Climate Change, WMO & UNEP. http://www.ipcc.ch/pdf/assessment‐report/ar4/wg1/ar4‐uncertaintyguidancenote.pdf.
Lázaro‐Lobo, A., Alonso, A., Saldaña‐López, A., Granda, E., Romero‐Blanco, A., Fernández, R. D., & Castro‐Díez, P. (2023). Impacts of plant invasions on ecosystem functionality: A perspective for ecosystem health and ecosystem services. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & D. R. Batish (Eds.), Plant invasions and global climate change (pp. 31–56). Springer.
Le Roux, J. (2021). The evolutionary ecology of invasive species. Academic Press.
Leger, E. A., & Espeland, E. K. (2010). Coevolution between native and invasive plant competitors: Implications for invasive species management. Evolutionary Applications, 3(2), 169–178. https://doi.org/10.1111/j.1752‐4571.2009.00105.x.
Leroy, B., Bellard, C., Dias, M. S., Hugueny, B., Jézéquel, C., Leprieur, F., Oberdorff, T., Robuchon, M., & Tedesco, P. A. (2023). Major shifts in biogeographic regions of freshwater fishes as evidence of the Anthropocene epoch. Science Advances, 9(46), eadi5502. https://doi.org/10.1126/sciadv.adi5502.
Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world's worst invasive alien species a selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a Specialist Group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift‐out in Aliens 12, December 2000. Updated and reprinted version: November 2004.
Macêdo, R. L., Russo, P., Corrêa, R. F., Rocha, O., dos Santos, L. N., & Branco, C. W. (2021). The drifting dinoflagellate Ceratium furcoides (Levander) Langhans 1925: Fundamental niche shift during global invasion. Hydrobiologia, 848, 2105–2117.
Masson, L., Masson, G., Beisel, J. N., Gutowsky, L. F. G., & Fox, M. G. (2018). Consistent life history shifts along invasion routes? An examination of round goby populations invading on two continents. Diversity and Distributions, 24(6), 841–852. https://doi.org/10.1111/ddi.12726.
Matzek, V. (2012). Trait values, not trait plasticity, best explain invasive species' performance in a changing environment. PLoS One, 7(10), e48821. https://doi.org/10.1371/journal.pone.0048821.
Milardi, M., Gavioli, A., Castaldelli, G., & Soininen, J. (2020). Partial decoupling between exotic fish and habitat constraints remains evident in late invasion stages. Aquatic Sciences, 82, 1–14. https://doi.org/10.1007/s00027‐019‐0688‐2.
Milardi, M., Gavioli, A., Soana, E., Lanzoni, M., Fano, E. A., & Castaldelli, G. (2020). The role of species introduction in modifying the functional diversity of native communities. Science of the Total Environment, 699, 134364. https://doi.org/10.1016/j.scitotenv.2019.134364.
Milardi, M., Iemma, A., Waite, I. R., Gavioli, A., Soana, E., & Castaldelli, G. (2022). Natural and anthropogenic factors drive large‐scale freshwater fish invasions. Scientific Reports, 12(1), 10465. https://doi.org/10.1038/s41598‐022‐14556‐5.
Müller‐Schärer, H., & Steinger, T. (2004). Predicting evolutionary change in invasive, exotic plants and its consequences for plant‐herbivore interactions. In L. E. Ehler, R. Sforza, & T. Mateille (Eds.), Genetics, evolution and biological control (pp. 137–162). CAB International.
Myles‐Gonzalez, E., Burness, G., Yavno, S., Rooke, A., & Fox, M. G. (2015). To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behavioral Ecology, 26(4), 1083–1090. https://doi.org/10.1093/beheco/arv050.
Nakagawa, S., Noble, D. W., Senior, A. M., & Lagisz, M. (2017). Meta‐evaluation of meta‐analysis: Ten appraisal questions for biologists. BMC Biology, 15(1), 18. https://doi.org/10.1186/s12915‐017‐0357‐7.
Niedrist, G. H., Hilpold, A., & Kranebitter, P. (2023). Unveiling the rise of non‐native fishes in eastern alpine mountain rivers: Population trends and implications. Journal of Fish Biology, 103(5), 1085–1094. https://doi.org/10.1111/jfb.15508.
Pagad, S., Bisset, S., Genovesi, P., Groom, Q., Hirsch, T., Jetz, W., Ranipeta, A., Schigel, D., Sica, Y. V., & McGeoch, M. A. (2022). Country compendium of the global register of introduced and invasive species. Scientific Data, 9(1), 391.
Pander, J., Habersetzer, L., Casas‐Mulet, R., & Geist, J. (2022). Effects of stream thermal variability on macroinvertebrate community: Emphasis on native versus non‐native gammarid species. Frontiers in Environmental Science, 10, 869396. https://doi.org/10.3389/fenvs.2022.869396.
Pergl, J., Pyšek, P., Essl, F., Jeschke, J. M., Courchamp, F., Geist, J., Hejda, M., Kowarik, I., Mill, A., Musseau, C., Pipek, P., Saul, W. C., von Schmalensee, M., & Strayer, D. (2020). Need for routine tracking of biological invasions. Conservation Biology, 34, 1311–1314. https://doi.org/10.1111/cobi.13445.
Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C., & Haase, P. (2020). Meta‐analysis of multidecadal biodiversity trends in Europe. Nature Communications, 11(1), 3486. https://doi.org/10.1038/s41467‐020‐17171‐y.
Pincheira‐Donoso, D., Tregenza, T., Butlin, R. K., & Hodgson, D. J. (2018). Sexes and species as rival units of niche saturation during community assembly. Global Ecology and Biogeography, 27(5), 593–603. https://doi.org/10.1111/geb.12722.
Purcell, K. M., & Stockwell, C. A. (2015). An evaluation of the genetic structure and post‐introduction dispersal of a non‐native invasive fish to the North Island of New Zealand. Biological Invasions, 17, 625–636. https://doi.org/10.1007/s10530‐014‐0753‐7.
Pyšek, P., Jarošík, V., Müllerová, J., Pergl, J., & Wild, J. (2008). Comparing the rate of invasion by Heracleum mantegazzianum at continental, regional, and local scales. Diversity and Distributions, 14, 355–363. https://doi.org/10.1111/j.1472‐4642.2007.00431.x.
Rehage, J. S., & Sih, A. (2004). Dispersal behavior, boldness, and the link to invasiveness: A comparison of four Gambusia species. Biological Invasions, 6(3), 379–391. https://doi.org/10.1023/B:BINV.0000034618.93140.a5.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480.
Renault, D. (2020). A review of the phenotypic traits associated with insect dispersal polymorphism and experimental designs for sorting out resident and disperser phenotypes. Insects, 11(4), 214. https://doi.org/10.3390/insects11040214.
Renault, D., Hess, M. C. M., Braschi, J., Cuthbert, R., Sperandii, M. G., Bazzichetto, M., Chabrerie, O., Thiébaut, G., Buisson, E., Grandjean, F., Bittebiere, A. K., Mouchet, M., & Massol, F. (2022). Advancing biological invasion hypothesis testing using functional diversity. Science of the Total Environment, 834, 155102. https://doi.org/10.1016/j.scitotenv.2022.155102.
Renault, D., Laparie, M., McCauley, S. J., & Bonte, D. (2018). Environmental adaptations, ecological filtering and dispersal, central to insect invasions. Annual Review of Entomology, 63, 345–368. https://doi.org/10.1146/annurev‐ento‐020117‐043315.
Richardson, D. M., & Ricciardi, A. (2013). Misleading criticisms of invasion science: A field guide. Diversity and Distributions, 19(12), 1461–1467.
Rilov, G., Canning‐Clode, J., & Guy‐Haim, T. (2023). Ecological impacts of invasive ecosystem engineers: A global perspective across terrestrial and aquatic systems. Functional Ecology, 38(1), 37–51. https://doi.org/10.1111/1365‐2435.14406.
Roy, H. E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Sankaran, K. V., McGeoch, M. A., Meyerson, L. A., Nuñez, M. A., Ordonez, A., Rahlao, S. J., Schwindt, E., Seebens, H., Sheppard, A. W., & Vandvik, V. (Eds.). (2023). Summary for policymakers of the thematic assessment report on invasive alien species and their control of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat. https://doi.org/10.5281/zenodo.7430692.
Roy, H. E., Rabitsch, W., Scalera, R., Stewart, A., Gallardo, B., Genovesi, P., Essl, F., Adriaens, T., Bacher, S., Booy, O., Branquart, E., Brunel, S., Copp, G. H., Dean, H., D'hondt, B., Josefsson, M., Kenis, M., Kettunen, M., Linnamagi, M., … Zenetos, A. (2018). Developing a framework of minimum standards for the risk assessment of alien species. Journal of Applied Ecology, 55, 526–538. https://doi.org/10.1111/1365‐2664.13025.
Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.
Schrieber, K., & Lachmuth, S. (2017). The genetic paradox of invasions revisited: The potential role of inbreeding × environment interactions in invasion success. Biological Reviews, 92, 939–952. https://doi.org/10.1111/brv.12263.
Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., van Kleunen, M., Kühn, I., Jeschke, J. M., Lenzner, B., Liebhold, A. M., Pattison, Z., Pergl, J., Pyšek, P., Winter, M., & Essl, F. (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970–982. https://doi.org/10.1111/gcb.15333.
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti‐Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. https://doi.org/10.1038/ncomms14435.
Shackleton, R. T., Shackleton, C. M., & Kull, C. A. (2019). The role of invasive alien species in shaping local livelihoods and human well‐being: A review. Journal of Environmental Management, 229, 145–157. https://doi.org/10.1016/j.jenvman.2018.05.007.
Simberloff, D. (2013). Invasive species: What everyone needs to know. Oxford University Press.
Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García‐Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66.
Soto, I., Ahmed, D. A., Balzani, P., Cuthbert, R. N., & Haubrock, P. J. (2023). Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Science of the Total Environment, 872, 161818. https://doi.org/10.1016/j.scitotenv.2023.161818.
Soto, I., Ahmed, D. A., Beidas, A., Oficialdegui, F. J., Tricarico, E., Angeler, D. G., Amatulli, G., Briski, E., Datry, T., Dohet, A., Domisch, S., England, J., Feio, M. J., Forcellini, M., Johnson, R. K., Jones, J. I., Larrañaga, A., L'Hoste, L., Murphy, J. F., … Haubrock, P. J. (2023). Long‐term trends in crayfish invasions across European rivers. Science of the Total Environment, 867, 161537. https://doi.org/10.1016/j.scitotenv.2023.161537.
Soto, I., Balzani, P., Carneiro, L., Cuthbert, R. N., Macêdo, R., Tarkan, A. S., Ahmed, D., Bang, A., Bacela‐Spychalska, K., Bailey, S., Baudry, T., Ballesteros, L., Bortolus, A., Briski, E., Britton, R., Buřič, M., Camacho‐Cervantes, M., Cano‐Barbacil, C., Copilaș‐Ciocianu, D., … Haubrock, P. J. (2024). Taming the terminological tempest in invasion science. Biological Reviews. https://doi.org/10.1111/brv.13071.
Soto, I., Cuthbert, R. N., Ahmed, D. A., Kouba, A., Domisch, S., Marquez, J. R., Beidas, A., Amatulli, G., Kiesel, J., Shen, L. Q., Florencio, M., Lima, H., Briski, E., Altermatt, F., Archambaud‐Suard, G., Borza, P., Csabai, Z., Datry, T., Floury, M., … Haubrock, P. J. (2023). Tracking a killer shrimp: Dikerogammarus villosus invasion dynamics across Europe. Diversity and Distributions, 29, 157–172. https://doi.org/10.1111/ddi.13649.
Spear, M. J., Walsh, J. R., Ricciardi, A., & Zanden, M. J. V. (2021). The invasion ecology of sleeper populations: Prevalence, persistence, and abrupt shifts. Bioscience, 71(4), 357–369.
Strayer, D. L., D'Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., Jarić, I., Jöhnk, K., Jones, C. G., Lambin, X., Latzka, A. W., Pergl, J., Pyšek, P., Robertson, P., von Schmalensee, M., Stefansson, R. A., Wright, J., & Jeschke, J. M. (2017). Boom‐bust dynamics in biological invasions: Towards an improved application of the concept. Ecology Letters, 20, 1337–1350. https://doi.org/10.1111/ele.12822.
Taylor, C. M., & Hastings, A. (2005). Allee effects in biological invasions. Ecology Letters, 8, 895–908. https://doi.org/10.1111/j.1461‐0248.2005.00787.x.
Thomsen, M. S., Olden, J. D., Wernberg, T., Griffin, J. N., & Silliman, B. R. (2011). A broad framework to organize and compare ecological invasion impacts. Environmental Research, 111, 899–908. https://doi.org/10.1016/j.envres.2011.05.024.
Tobin, P. C., Berec, L., & Liebhold, A. M. (2011). Exploiting Allee effects for managing biological invasions. Ecology Letters, 14, 615–624. https://doi.org/10.1111/j.1461‐0248.2011.01614.x.
Tsutsui, N. D., Suarez, A. V., Holway, D. A., & Case, T. J. (2000). Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 97, 5948–5953. https://doi.org/10.1073/pnas.100110397.
van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, 13, 235–245. https://doi.org/10.1111/j.1461‐0248.2009.01418.x.
Venette, R. C., Gordon, D. R., Juzwik, J., Koch, F. H., Liebhold, A. M., Peterson, R. K., Sing, S. E., & Yemshanov, D. (2021). Early intervention strategies for invasive species management: Connections between risk assessment, prevention efforts, eradication, and other rapid responses. In T. M. Poland, T. Patel‐Weynand, D. M. Finch, C. F. Miniat, D. C. Hayes, & V. M. Lopez (Eds.), Invasive species in forests and rangelands of the United States: A comprehensive science synthesis for the United States Forest Sector (pp. 111–131). Heidelberg Germany: Springer International Publishing. https://doi.org/10.1007/978‐3‐030‐45367‐1_6.
Viechtbauer, W. (2010). Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03.
Vilizzi, L., Copp, G. H., Hill, J. E., Adamovich, B., Aislabie, L., Akin, D., al‐Faisal, A. J., Almeida, D., Azmai, M. N. A., Bakiu, R., Bellati, A., Bernier, R., Bies, J. M., Bilge, G., Branco, P., Bui, T. D., Canning‐Clode, J., Cardoso Ramos, H. A., Castellanos‐Galindo, G. A., … Clarke, S. (2021). A global‐scale screening of non‐native aquatic organisms to identify potentially invasive species under current and future climate conditions. Science of the Total Environment, 788, 147868. https://doi.org/10.1016/j.scitotenv.2021.147868.
Vilizzi, L., Hill, J. E., Piria, M., & Copp, G. H. (2022). A protocol for screening potentially invasive non‐native species using weed risk assessment‐type decision‐support tools. Science of the Total Environment, 832, 154966. https://doi.org/10.1016/j.scitotenv.2022.154966.
Westcott, D. A., & Fletcher, C. S. (2011). Biological invasions and the study of vertebrate dispersal of plants: Opportunities and integration. Acta Oecologica, 37, 650–656. https://doi.org/10.1016/j.actao.2011.04.007.
Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J., & Richardson, D. M. (2009). Biogeographic concepts define invasion biology. Trends in Ecology & Evolution, 24, 586. https://doi.org/10.1016/j.tree.2009.07.004.
Zhang, L., Rohr, J., Cui, R., Xin, Y., Han, L., Yang, X., Gu, S., du, Y., Liang, J., Wang, X., Wu, Z., Hao, Q., & Liu, X. (2022). Biological invasions facilitate zoonotic disease emergences. Nature Communications, 13, 1762. https://doi.org/10.1038/s41467‐022‐29378‐2.
معلومات مُعتمدة: ANR-20-EBI5-0004 Biodiversa+; FWES-2021-0011 Sukachev Institute of Forest SB RAS; PID2019-103936GB-C21 European Union NextGeneration EU: NextGenerationEU/PRTR); TED2021-129889B-I00 European Union NextGeneration EU: NextGenerationEU/PRTR); RED2022-134338 European Union NextGeneration EU: NextGenerationEU/PRTR); MCIN/AEI/10.13039/501100011033) Ministerio de Ciencia, Innovación y Universidades; PID2019-103936GB-C21 Ministerio de Ciencia, Innovación y Universidades; TED2021-129889B-I00 Ministerio de Ciencia, Innovación y Universidades; RED2022-134338 Ministerio de Ciencia, Innovación y Universidades; ECF-2021-001 Leverhulme Trust; 22-16-00075 Russian Science Foundation; CN00000033 Italian Ministry of University and Research; 899546 Marie Skłodowska-Curie
فهرسة مساهمة: Keywords: Europe; freshwater macroinvertebrates; long‐term trends; non‐native species; population spread; population‐level dynamics; risk assessments
تواريخ الأحداث: Date Created: 20240513 Date Completed: 20240513 Latest Revision: 20240513
رمز التحديث: 20240513
DOI: 10.1111/gcb.17312
PMID: 38736133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.17312