دورية أكاديمية

EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis.

التفاصيل البيبلوغرافية
العنوان: EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis.
المؤلفون: Liu X; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Gao X; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Yang Y; Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China., Yang D; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Guo Q; Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China., Li L; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Liu S; Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China., Cong W; Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China., Lu S; Department of Medical Laboratory, Qingdao Medical College, Qingdao University, Qingdao, China., Hou L; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Wang B; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China., Li N; School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China. ning-99@163.com.
المصدر: Apoptosis : an international journal on programmed cell death [Apoptosis] 2024 Aug; Vol. 29 (7-8), pp. 1161-1184. Date of Electronic Publication: 2024 May 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 9712129 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-675X (Electronic) Linking ISSN: 13608185 NLM ISO Abbreviation: Apoptosis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Dordrecht, Netherlands : Springer
Original Publication: London : Rapid Science Publishers,
مواضيع طبية MeSH: Carcinoma, Hepatocellular*/drug therapy , Carcinoma, Hepatocellular*/genetics , Carcinoma, Hepatocellular*/metabolism , Carcinoma, Hepatocellular*/pathology , Quinolines*/pharmacology , Quinolines*/therapeutic use , Liver Neoplasms*/drug therapy , Liver Neoplasms*/genetics , Liver Neoplasms*/metabolism , Liver Neoplasms*/pathology , Phenylurea Compounds*/pharmacology , Phenylurea Compounds*/therapeutic use , Drug Resistance, Neoplasm*/genetics , Drug Resistance, Neoplasm*/drug effects , Tumor Suppressor Protein p53*/metabolism , Tumor Suppressor Protein p53*/genetics , Phosphatidylinositol 3-Kinases*/metabolism , Phosphatidylinositol 3-Kinases*/genetics , Signal Transduction*/drug effects , Proto-Oncogene Proteins c-akt*/metabolism , Proto-Oncogene Proteins c-akt*/genetics, Humans ; Animals ; Cell Line, Tumor ; Mice ; Apoptosis/drug effects ; Cell Proliferation/drug effects ; Mice, Nude ; Antineoplastic Agents/pharmacology ; Antineoplastic Agents/therapeutic use ; Gene Expression Regulation, Neoplastic/drug effects ; Male ; Xenograft Model Antitumor Assays ; Mice, Inbred BALB C ; Proto-Oncogene Proteins c-mdm2/metabolism ; Proto-Oncogene Proteins c-mdm2/genetics ; Female
مستخلص: Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Wang W, Wei C (2020) Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis 7:308–319. https://doi.org/10.1016/j.gendis.2020.01.014. (PMID: 10.1016/j.gendis.2020.01.014328849857452544)
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660. (PMID: 10.3322/caac.2166033538338)
Qin S, Bi F, Gu S et al (2021) Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. J Clin Oncol 39:3002–3011. https://doi.org/10.1200/JCO.21.00163. (PMID: 10.1200/JCO.21.00163341855518445562)
Verset G, Borbath I, Karwal M et al (2022) Pembrolizumab monotherapy for previously untreated advanced hepatocellular carcinoma: data from the open-label, phase II KEYNOTE-224 trial. Clin Cancer Res 28:2547–2554. https://doi.org/10.1158/1078-0432.CCR-21-3807. (PMID: 10.1158/1078-0432.CCR-21-3807354212289784157)
Gordan JD, Kennedy EB, Abou-Alfa GK et al (2020) Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol 38:4317–4345. https://doi.org/10.1200/JCO.20.02672. (PMID: 10.1200/JCO.20.0267233197225)
Pinter M, Peck-Radosavljevic M (2018) Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol Ther 48:598–609. https://doi.org/10.1111/apt.14913. (PMID: 10.1111/apt.14913300396406120553)
El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127. (PMID: 10.1056/NEJMra100168321992124)
Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. The Lancet 391:1301–1314. https://doi.org/10.1016/S0140-6736(18)30010-2. (PMID: 10.1016/S0140-6736(18)30010-2)
Tohyama O, Matsui J, Kodama K et al (2014) Antitumor activity of Lenvatinib (E7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:1–13. https://doi.org/10.1155/2014/638747. (PMID: 10.1155/2014/638747)
Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 391:1163–1173. https://doi.org/10.1016/S0140-6736(18)30207-1. (PMID: 10.1016/S0140-6736(18)30207-1)
Llovet JM, Montal R, Sia D, Finn RS (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15:599–616. https://doi.org/10.1038/s41571-018-0073-4. (PMID: 10.1038/s41571-018-0073-430061739)
Lu Y, Shen H, Huang W et al (2021) Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 7:359. https://doi.org/10.1038/s41420-021-00747-y. (PMID: 10.1038/s41420-021-00747-y347952178602346)
Tao M, Han J, Shi J et al (2023) Application and resistance mechanisms of lenvatinib in patients with advanced hepatocellular carcinoma. J Hepatocell Carcinoma 10:1069–1083. https://doi.org/10.2147/JHC.S411806. (PMID: 10.2147/JHC.S4118063745765210348321)
Buttell A, Qiu W (2023) The action and resistance mechanisms of Lenvatinib in liver cancer. Mol Carcinog 62:1918–1934. https://doi.org/10.1002/mc.23625. (PMID: 10.1002/mc.2362537671815)
Yang J, Wang B, Xu Q et al (2021) TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 476:1151–1163. https://doi.org/10.1007/s11010-020-03979-1. (PMID: 10.1007/s11010-020-03979-133200377)
Hu J, Li G, Qu L et al (2016) TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death. Cell Death Dis 7:e2323–e2323. https://doi.org/10.1038/cddis.2016.230. (PMID: 10.1038/cddis.2016.230274909285108317)
Chang Y, Li Y, Hu J et al (2013) Adenovirus vector-mediated expression of TMEM166 inhibits human cancer cell growth by autophagy and apoptosis in vitro and in vivo. Cancer Lett 328:126–134. https://doi.org/10.1016/j.canlet.2012.08.032. (PMID: 10.1016/j.canlet.2012.08.03222960574)
Shen X, Kan S, Liu Z et al (2017) EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp Cell Res 352:130–138. https://doi.org/10.1016/j.yexcr.2017.02.003. (PMID: 10.1016/j.yexcr.2017.02.00328185834)
Zhen Y, Yuan Z, Zhang J et al (2022) Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell Death Dis 13:375. https://doi.org/10.1038/s41419-022-04823-8. (PMID: 10.1038/s41419-022-04823-8354401049019038)
Zhen Y, Zhao R, Wang M et al (2020) Flubendazole elicits anti-cancer effects via targeting EVA1A-modulated autophagy and apoptosis in Triple-negative Breast Cancer. Theranostics 10:8080–8097. https://doi.org/10.7150/thno.43473. (PMID: 10.7150/thno.43473327244597381743)
Xu Q, Liao Z, Gong Z et al (2022) Down-regulation of EVA1A by miR-103a-3p promotes hepatocellular carcinoma cells proliferation and migration. Cell Mol Biol Lett 27:93. https://doi.org/10.1186/s11658-022-00388-8. (PMID: 10.1186/s11658-022-00388-8362731229588234)
Ren W-W, Li D-D, Chen X et al (2018) MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis 9:547. https://doi.org/10.1038/s41419-018-0592-z. (PMID: 10.1038/s41419-018-0592-z297493745945723)
Li Y, Zhao W, Chen S et al (2024) Bioactive electrospun nanoyarn-constructed textile dressing patches delivering Chinese herbal compound for accelerated diabetic wound healing. Mater Des 237:112623. https://doi.org/10.1016/j.matdes.2023.112623. (PMID: 10.1016/j.matdes.2023.112623)
Liu X, He M, Li L et al (2021) EMT and cancer cell stemness associated with chemotherapeutic resistance in esophageal cancer. Front Oncol 11:672222. https://doi.org/10.3389/fonc.2021.672222. (PMID: 10.3389/fonc.2021.672222341506368209423)
Pan G, Liu Y, Shang L et al (2021) EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun 41:199–217. https://doi.org/10.1002/cac2.12138. (PMID: 10.1002/cac2.12138)
Kichi ZA, Soltani M, Rezaei M et al (2022) The emerging role of EMT-related lncRNAs in therapy resistanceand their applications as biomarkers. Curr Med Chem 29:4574–4601. https://doi.org/10.2174/0929867329666220329203032. (PMID: 10.2174/092986732966622032920303235352644)
Hou W, Bridgeman B, Malnassy G et al (2022) Integrin subunit beta 8 contributes to lenvatinib resistance in HCC. Hepatol Commun 6:1786–1802. https://doi.org/10.1002/hep4.1928. (PMID: 10.1002/hep4.1928352384969234648)
Meek DW, Hupp TR (2010) The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 20:19–28. https://doi.org/10.1016/j.semcancer.2009.10.005. (PMID: 10.1016/j.semcancer.2009.10.00519897041)
Levav-Cohen Y, Haupt S, Haupt Y (2005) Mdm2 in growth signaling and cancer: mini review. Growth Factors 23:183–192. https://doi.org/10.1080/08977190500196218. (PMID: 10.1080/0897719050019621816243710)
Malhotra L, Sharma S, Hariprasad G et al (2022) Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. Biochim Biophys Acta BBA - Mol Cell Res 1869:119343. https://doi.org/10.1016/j.bbamcr.2022.119343. (PMID: 10.1016/j.bbamcr.2022.119343)
Wilcken R, Wang G, Boeckler FM, Fersht AR (2012) Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc Natl Acad Sci 109:13584–13589. https://doi.org/10.1073/pnas.1211550109.
Vogel A, Qin S, Kudo M et al (2021) Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol 6:649–658. https://doi.org/10.1016/S2468-1253(21)00110-2. (PMID: 10.1016/S2468-1253(21)00110-234087115)
Sun W, Ma X-M, Bai J-P et al (2012) Transmembrane protein 166 expression in esophageal squamous cell carcinoma in Xinjiang, China. Asian Pac J Cancer Prev 13:3713–3716. https://doi.org/10.7314/APJCP.2012.13.8.3713. (PMID: 10.7314/APJCP.2012.13.8.371323098460)
Tao M, Shi X-Y, Yuan C-H et al (2015) Expression profile and potential roles of EVA1A in normal and neoplastic pancreatic tissues. Asian Pac J Cancer Prev 16:373–376. https://doi.org/10.7314/APJCP.2015.16.1.373. (PMID: 10.7314/APJCP.2015.16.1.37325640383)
Psyrri A, Arkadopoulos N, Vassilakopoulou M et al (2012) Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther 12:1347–1357. https://doi.org/10.1586/era.12.113. (PMID: 10.1586/era.12.11323176622)
Vara JÁF, Casado E, De Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007. (PMID: 10.1016/j.ctrv.2003.07.007)
Liu R, Chen Y, Liu G et al (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11:797. https://doi.org/10.1038/s41419-020-02998-6. (PMID: 10.1038/s41419-020-02998-6329731357515865)
Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982. https://doi.org/10.1038/ncb1101-973. (PMID: 10.1038/ncb1101-97311715018)
Mayo LD, Dixon JE, Durden DL et al (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277:5484–5489. https://doi.org/10.1074/jbc.M108302200. (PMID: 10.1074/jbc.M10830220011729185)
Heerboth S, Housman G, Leary M et al (2015) EMT and tumor metastasis. Clin Transl Med 4:e6. https://doi.org/10.1186/s40169-015-0048-3. (PMID: 10.1186/s40169-015-0048-3)
Du B, Shim J (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21:965. https://doi.org/10.3390/molecules21070965. (PMID: 10.3390/molecules21070965274552256273543)
Chen T, You Y, Jiang H, Wang ZZ (2017) Epithelial–mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232:3261–3272. https://doi.org/10.1002/jcp.25797. (PMID: 10.1002/jcp.25797280792535507753)
Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001. (PMID: 10.1016/j.tcb.2018.12.00130594349)
Mak MP, Tong P, Diao L et al (2016) A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res 22:609–620. https://doi.org/10.1158/1078-0432.CCR-15-0876. (PMID: 10.1158/1078-0432.CCR-15-087626420858)
Liang F, Ren C, Wang J et al (2019) The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis 8:59. https://doi.org/10.1038/s41389-019-0165-8. (PMID: 10.1038/s41389-019-0165-8315979126785561)
Zhang J, Lei Y, Gao X et al (2013) p53 Attenuates the oncogenic Ras-induced epithelial–mesenchymal transition in human mammary epithelial cells. Biochem Biophys Res Commun 434:606–613. https://doi.org/10.1016/j.bbrc.2013.03.124. (PMID: 10.1016/j.bbrc.2013.03.12423583409)
Jiang Y, Xie X, Li Z et al (2011) Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res 71:2959–2968. https://doi.org/10.1158/0008-5472.CAN-10-4077. (PMID: 10.1158/0008-5472.CAN-10-407721385899)
Kim T, Veronese A, Pichiorri F et al (2011) p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883. https://doi.org/10.1084/jem.20110235. (PMID: 10.1084/jem.20110235215187993092351)
Cano A, Diaz-Lopez A, Moreno-Bueno G (2014) Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 205. https://doi.org/10.2147/CMAR.S38156.
Parfenyev S, Singh A, Fedorova O et al (2021) Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 12:17. https://doi.org/10.1038/s41419-020-03327-7. (PMID: 10.1038/s41419-020-03327-7334144567791039)
Wang S-P, Wang W-L, Chang Y-L et al (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704. https://doi.org/10.1038/ncb1875. (PMID: 10.1038/ncb187519448627)
Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635. https://doi.org/10.1016/j.cell.2017.07.029. (PMID: 10.1016/j.cell.2017.07.029288020375726441)
Thapa N, Chen M, Horn HT et al (2020) Phosphatidylinositol 3-kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol 22:1357–1370. https://doi.org/10.1038/s41556-020-00596-4. (PMID: 10.1038/s41556-020-00596-4331399398647654)
Kapeller R, Chakrabarti R, Cantley L et al (1993) Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3’ kinase complexes: potential interactions with the microtubule cytoskeleton. Mol Cell Biol 13:6052–6063. (PMID: 8413207364665)
Sato M, Ueda Y, Takagi T, Umezawa Y (2003) Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5:1016–1022. https://doi.org/10.1038/ncb1054. (PMID: 10.1038/ncb105414528311)
Wang L, Yu C, Lu Y et al (2007) TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis 12:1489–1502. https://doi.org/10.1007/s10495-007-0073-9. (PMID: 10.1007/s10495-007-0073-917492404)
Li M, Lu G, Hu J et al (2016) EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy. Stem Cell Rep 6:396–410. https://doi.org/10.1016/j.stemcr.2016.01.011. (PMID: 10.1016/j.stemcr.2016.01.011)
Lam YK, Yu J, Huang H et al (2023) TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 78:727–740. https://doi.org/10.1002/hep.32802. (PMID: 10.1002/hep.3280236221953)
Liao Z, Gong Z, Wang Z et al (2022) The degradation of TMEM166 by autophagy promotes AMPK activation to protect SH-SY5Y cells exposed to MPP+. Cells 11:2706. https://doi.org/10.3390/cells11172706. (PMID: 10.3390/cells11172706360781159454683)
فهرسة مساهمة: Keywords: AKT; Autophagy; Drug resistance; EVA1A; Hepatocellular carcinoma; Lenvatinib; MDM2; p53
المشرفين على المادة: EE083865G2 (lenvatinib)
0 (Quinolines)
0 (Phenylurea Compounds)
0 (Tumor Suppressor Protein p53)
EC 2.7.1.- (Phosphatidylinositol 3-Kinases)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
0 (Antineoplastic Agents)
0 (TP53 protein, human)
EC 2.3.2.27 (Proto-Oncogene Proteins c-mdm2)
تواريخ الأحداث: Date Created: 20240514 Date Completed: 20240722 Latest Revision: 20240722
رمز التحديث: 20240722
DOI: 10.1007/s10495-024-01967-0
PMID: 38743191
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-675X
DOI:10.1007/s10495-024-01967-0