دورية أكاديمية

Genome-wide identification of the plant homeodomain-finger family in rye and ScPHD5 functions in cold tolerance and flowering time.

التفاصيل البيبلوغرافية
العنوان: Genome-wide identification of the plant homeodomain-finger family in rye and ScPHD5 functions in cold tolerance and flowering time.
المؤلفون: Jung WJ; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Korea., Jeong JH; Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea., Yoon JS; Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea., Seo YW; Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea. seoag@korea.ac.kr.; Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea. seoag@korea.ac.kr.
المصدر: Plant cell reports [Plant Cell Rep] 2024 May 15; Vol. 43 (6), pp. 142. Date of Electronic Publication: 2024 May 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, 1981-
مواضيع طبية MeSH: Gene Expression Regulation, Plant* , Flowers*/genetics , Flowers*/physiology , Plant Proteins*/genetics , Plant Proteins*/metabolism , Secale*/genetics , Secale*/physiology , Phylogeny*, Cold Temperature ; Plants, Genetically Modified/genetics ; Stress, Physiological/genetics ; Genome, Plant/genetics ; Multigene Family ; Homeodomain Proteins/genetics ; Homeodomain Proteins/metabolism ; PHD Zinc Fingers/genetics
مستخلص: Key Message: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59. (PMID: 770156210.1016/S0968-0004(00)88957-4)
Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649. (PMID: 1936001910.1038/nprot.2009.30)
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Cambridge, United Kingdom, Babraham Institute.
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242. (PMID: 17640358194797010.1186/1471-2164-8-242)
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49. (PMID: 25953851448926910.1093/nar/gkv416)
Bates LS, Waldren Ra, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. (PMID: 10.1007/BF00018060)
Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40. (PMID: 1629762710.1016/j.tibs.2005.11.001)
Bredow M, Vanderbeld B, Walker VK (2016) Knockdown of ice-binding proteins in brachypodium distachyon demonstrates their role in freeze protection. PLoS ONE 11:e0167941. (PMID: 27959937515453310.1371/journal.pone.0167941)
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. (PMID: 3258519010.1016/j.molp.2020.06.009)
Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(664–668):670. (PMID: 8024787)
Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K (2018) OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol 218:219–231. (PMID: 29364524587325310.1111/nph.14977)
Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335. (PMID: 20596258289312910.1371/journal.pone.0011335)
Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469. (PMID: 1455577452387210.1104/pp.103.027979)
Decena MA, Gálvez-Rojas S, Agostini F, Sancho R, Contreras-Moreira B, Des Marais DL, Hernandez P, Catalán P (2021) Comparative genomics, evolution, and drought-induced expression of dehydrin genes in model Brachypodium grasses. Plants 10:2664. (PMID: 34961135870931010.3390/plants10122664)
Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555. (PMID: 1174309913356210.1104/pp.010196)
Feng Y, Liu QP, Xue QZ (2004) Comparative phylogenetic analysis of the rice and Arabidopsis PHD-finger proteins. Yi Chuan Xue Bao 31:1284–1293. (PMID: 15651682)
Fernández Gómez J, Wilson ZA (2014) A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J 12:765–777. (PMID: 2468466610.1111/pbi.12181)
Fernández-Calleja M, Casas AM, Igartua E (2021) Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theor Appl Genet 134:1867–1897. (PMID: 33969431826342410.1007/s00122-021-03824-z)
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(S2):W29–W37. (PMID: 21593126312577310.1093/nar/gkr367)
Fornara F, Parenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219. (PMID: 1529912152079110.1104/pp.104.045039)
Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci 93:10274–10279. (PMID: 88167903837410.1073/pnas.93.19.10274)
Geiger H, Miedaner T (2009) Rye (Secale cereale L.). Cereals. https://doi.org/10.1007/978-0-387-72297-9. (PMID: 10.1007/978-0-387-72297-9)
Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114. (PMID: 26904076474626710.3389/fpls.2016.00114)
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. (PMID: 2550485010.1093/bioinformatics/btu817)
Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L (2022) ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. Int J Mol Sci 23:1549. (PMID: 35163471883579210.3390/ijms23031549)
Jeong HJ, Yang J, Cho LH, An G (2016) OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days. Plant Cell Rep 35:905–920. (PMID: 2679514210.1007/s00299-015-1931-5)
Jia X, Zhang X, Qu J, Han R (2016) Optimization conditions of wheat mesophyll protoplast isolation. Agric Sci 07:850–858.
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. (PMID: 24451626399814210.1093/bioinformatics/btu031)
Joo JH, Wang S, Chen J, Jones A, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970. (PMID: 15705948106971110.1105/tpc.104.029603)
Jung WJ, Seo YW (2019) Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene 5:82–94. (PMID: 10.1016/j.gene.2018.10.055)
Kang H, Zhang M, Zhou S, Guo Q, Chen F, Wu J, Wang W (2016) Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Sci 248:102–115. (PMID: 2718195210.1016/j.plantsci.2016.04.015)
Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, Bes M, Bourrie I, Meynard D, Beeckman T, Selvaraj MG, Manabu I, Genga AM, Brugidou C, Do VN, Guiderdoni E, Morel JB, Gantet P (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169:2935–2949. (PMID: 264241584677910)
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. (PMID: 31375807760550910.1038/s41587-019-0201-4)
Kim DY, Lee YJ, Hong MJ, Kim JH, Seo YW (2021) Genome wide analysis of U-box E3 ubiquitin ligases in wheat (Triticum aestivum L.). Int J Mol Sc 22:2699. (PMID: 10.3390/ijms22052699)
Kitagawa S, Shimada S, Murai K (2012) Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat. Genes Genet Syst 87:161–168. (PMID: 2297639110.1266/ggs.87.161)
Kolde R, Kolde MR, (2018). Package ‘pheatmap’. R Package. 1.
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402. (PMID: 17322399180432810.1101/gad.1518407)
Lee S, Woo YM, Ryu SI, Shin YD, Kim WT, Park KY, Lee IJ, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147:156–168. (PMID: 18354041233031510.1104/pp.107.114256)
Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. (PMID: 30931475660246810.1093/nar/gkz239)
Li G, Wang L, Yang J, He H, Jin H, Li X, Ren T, Ren Z, Li F, Han X (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53:574–584. (PMID: 33737755803507510.1038/s41588-021-00808-z)
Li Q, Wang Y, Wang F, Guo Y, Duan X, Sun J, An H (2016) Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon. Physiol Plant 157:507–518. (PMID: 2685668010.1111/ppl.12427)
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. (PMID: 2422767710.1093/bioinformatics/btt656)
Liu J, Shi Y, Yang S (2018) Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Biol 60:780–795. (PMID: 2966732810.1111/jipb.12657)
Liu Y, Liu C, Li Z, Xia M, Jiang H, Cheng B, Zhou J, Zhu S (2011) Overexpression of a plant homeodomain (PHD)-finger transcription factor, OsPHD1, can enhance stress tolerance in rice. J Agric Biotechnol 19:462–469.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25:402–408. (PMID: 1184660910.1006/meth.2001.1262)
López-González L, Mouriz A, Narro-Diego L, Bustos R, Martínez-Zapater JM, Jarillo JA, Piñeiro M (2014) Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PhD-containing proteins. Plant Cell 26:3922–3938. (PMID: 25281686424758510.1105/tpc.114.130781)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. (PMID: 10.1186/s13059-014-0550-8)
Ma L, Zhu T, Wang H, Zhou H, Shao L, Ding Q, Zhang D, Ma L (2020) Genome-wide identification, phylogenetic analysis and expression profiling of the late embryogenesis-abundant (LEA) gene family in Brachypodium distachyon. Funct Plant Biol 48:386–401. (PMID: 10.1071/FP20143)
Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968. (PMID: 3471539310.1016/j.molp.2021.10.006)
Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698. (PMID: 24104565387778510.1105/tpc.113.114553)
Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612. (PMID: 2128475610.1111/j.1365-313X.2011.04517.x)
Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956. (PMID: 1033047814422610.1105/tpc.11.5.949)
Miura K, Renhu N, Suzaki T (2020) The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Commun Biol 3:23. (PMID: 31925312695421110.1038/s42003-019-0746-2)
Molitor AM, Bu Z, Yu Y, Shen WH (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLOS Genet 10:e1004091. (PMID: 24465219390038410.1371/journal.pgen.1004091)
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623. (PMID: 1294095410.1046/j.1365-313X.2003.01833.x)
Musselman CA, Kutateladze TG (2011) Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res 39:9061–9071. (PMID: 21813457324164210.1093/nar/gkr613)
Oliveros JC, (2007). VENNY. An interactive tool for comparing lists with venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.
Pang F, Niu J, Solanki MK, Nosheen S, Liu Z, Wang Z (2022) PHD-finger family genes in wheat (Triticum aestivum L.): evolutionary conservatism, functional diversification, and active expression in abiotic stress. Front Plant Sci 13:1016831. (PMID: 36578331979196010.3389/fpls.2022.1016831)
Qin M, Luo W, Zheng Y, Guan H, Xie X (2019a) Genome-wide identification and expression analysis of the PHD-finger gene family in Solanum tuberosum. PLoS ONE 14:e0226964. (PMID: 31881057693426710.1371/journal.pone.0226964)
Qin Z, Bai Y, Muhammad S, Wu X, Deng P, Wu J, An H, Wu L (2019b) Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon. Nat Commun 10:812. (PMID: 30778068637940810.1038/s41467-019-08785-y)
R Core Team (2023) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing ( https://www.R-project.org/ ).
Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer KFX, Guo L (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53:564–573. (PMID: 33737754803507210.1038/s41588-021-00807-0)
Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, Kaeppler HF, Amasino RM (2014) Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiol 164:694–709. (PMID: 2435760110.1104/pp.113.232678)
Schindler U, Beckmann H, Cashmore AR (1993) HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J 4:137–150. (PMID: 810608210.1046/j.1365-313X.1993.04010137.x)
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK (2018) Brachypodium: a monocot grass model genus for plant biology. Plant Cell 30:1673–1694. (PMID: 29997238613968210.1105/tpc.18.00083)
Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104. (PMID: 1086827510.2144/00286ir01)
Sun M, Jia B, Yang J, Cui N, Zhu Y, Sun X (2017) Genome-wide identification of the PHD-finger family genes and their responses to environmental stresses in Oryza sativa L. Int J Mol Sci 18:2005. (PMID: 32961651561865410.3390/ijms18092005)
Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164. (PMID: 1471227610.1038/nature02195)
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. (PMID: 33892491823349610.1093/molbev/msab120)
Teo ZWN, Zhou W, Shen L (2019) Dissecting the function of MADS-box transcription factors in orchid reproductive development. Front Plant Sci 10:1474. (PMID: 31803211687254610.3389/fpls.2019.01474)
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O (2022) DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res 50:W228–W234. (PMID: 35489069925280110.1093/nar/gkac278)
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129. (PMID: 28472432579373210.1093/nar/gkx382)
Wang M, Zou Z, Li Q, Xin H, Zhu X, Chen X, Li X (2017) Heterologous expression of three camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Rep 36:1125–1135. (PMID: 2845576410.1007/s00299-017-2143-y)
Wang Q, Liu J, Wang Y, Zhao Y, Jiang H, Cheng B (2015) Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response. Int J Mol Sci 16:23517–23544. (PMID: 26437398463271110.3390/ijms161023517)
Wang W, Wu Y, Shi R, Sun M, Li Q, Zhang G, Wu J, Wang Y, Wang W (2020) Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. Plant Cell Rep 39:653–667. (PMID: 3212399610.1007/s00299-020-02522-2)
Wei B, Zhang RZ, Guo JJ, Liu DM, Li AL, Fan RC, Mao L, Zhang XQ (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS ONE 9:e84781. (PMID: 24454749389026810.1371/journal.pone.0084781)
Wei W, Zhang YQ, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in arabidopsis. Plant J 81:871–883. (PMID: 2561981310.1111/tpj.12773)
Wen F, Wu X, Li T, Jia M, Liu X, Li P, Zhou X, Ji X, Yue X (2017) Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in brachypodium distachyon. PLoS ONE 12:e0180352. (PMID: 28683139550028910.1371/journal.pone.0180352)
Winicov I, Valliyodan B, Xue L, Hoober JK (2004) The MsPRP2 promoter enables strong heterologous gene expression in a root specific manner and is enhanced by overexpression of Alfin1. Planta 219:925–935. (PMID: 1517951410.1007/s00425-004-1296-4)
Woods DP, Ream TS, Bouché F, Lee J, Thrower N, Wilkerson C, Amasino RM (2017) Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proc Nat Aca Sci 114:6623–6628. (PMID: 10.1073/pnas.1700536114)
Wu S, Wu M, Dong Q, Jiang H, Cai R, Xiang Y (2016a) Genome-wide identification, classification and expression analysis of the PHD-finger protein family in populus trichocarpa. Gene 575:75–89. (PMID: 2631491210.1016/j.gene.2015.08.042)
Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX (2016b) Insights from the cold transcriptome and metabolome of dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci 7:1653. (PMID: 27877182509925710.3389/fpls.2016.01653)
Yang R, Hong Y, Ren Z, Tang K, Zhang H, Zhu JK, Zhao C (2019) A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis. Front Plant Sci 10:900. (PMID: 31354770663320710.3389/fpls.2019.00900)
Yin X, Liu X, Xu B, Lu P, Dong T, Yang D, Ye T, Feng YQ, Wu Y (2019) OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice. J Exp Bot 70:3895–3909. (PMID: 31034557668566810.1093/jxb/erz198)
Yoon JS, Kim JY, Kim DY, Seo YW (2021) A novel wheat ASR gene, TaASR2D, enhances drought tolerance in Brachypodium distachyon. Plant Physiol Biochem 159:400–414. (PMID: 3322919110.1016/j.plaphy.2020.11.014)
Yoon JS, Kim JY, Lee MB, Seo YW (2019) Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon. Plant Cell Rep 38:1109–1125. (PMID: 3113434810.1007/s00299-019-02429-7)
Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Struct Funct Bioinf 64:643–651. (PMID: 10.1002/prot.21018)
Zhai M, Sun Y, Jia C, Peng S, Liu Z, Yang G (2016) Over-expression of JrsHSP17.3 gene from Juglans regia confer the tolerance to abnormal temperature and NaCl stresses. J Plant Biol 59:549–558. (PMID: 10.1007/s12374-015-0507-9)
Zhang Z (2022) KaKs_calculator 3.0: calculating selective pressure on coding and non-coding sequences. Genomics Proteomics Bioinformatics 20:536–540. (PMID: 34990803980102610.1016/j.gpb.2021.12.002)
Zhang Z, Huang R (2013) Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in arabidopsis seedling. Bio Protoc 3:e817–e817. (PMID: 10.21769/BioProtoc.817)
معلومات مُعتمدة: 2021R1I1A1A01048945 National Research Foundation of Korea
فهرسة مساهمة: Keywords: Flowering; Freezing stress; MADS-box; Plant homeodomain-finger; Rye
تواريخ الأحداث: Date Created: 20240514 Date Completed: 20240514 Latest Revision: 20240716
رمز التحديث: 20240717
DOI: 10.1007/s00299-024-03226-7
PMID: 38744747
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-203X
DOI:10.1007/s00299-024-03226-7