دورية أكاديمية

The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review.

التفاصيل البيبلوغرافية
العنوان: The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review.
المؤلفون: Adhikary K; Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India., Sarkar R; Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India., Maity S; Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India., Banerjee I; Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India., Chatterjee P; Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India., Bhattacharya K; School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India., Ahuja D; School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India., Sinha NK; Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India., Maiti R; Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India.
المصدر: Journal of basic and clinical physiology and pharmacology [J Basic Clin Physiol Pharmacol] 2024 May 16; Vol. 35 (3), pp. 153-168. Date of Electronic Publication: 2024 May 16 (Print Publication: 2024).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Walter de Gruyter Country of Publication: Germany NLM ID: 9101750 Publication Model: eCollection Cited Medium: Internet ISSN: 2191-0286 (Electronic) Linking ISSN: 07926855 NLM ISO Abbreviation: J Basic Clin Physiol Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: Jun. 2011- : Berlin : Walter de Gruyter
Original Publication: London, England : Freund Pub. House, c1990-
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/microbiology , Gastrointestinal Microbiome*/physiology , Feeding Behavior*/physiology, Humans ; Animals ; Dysbiosis ; Insulin Resistance/physiology
مستخلص: Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
(© 2024 Walter de Gruyter GmbH, Berlin/Boston.)
References: Padhi, S, Nayak, AK, Behera, A. Type II diabetes mellitus: a review on recent drug-based therapeutics. Biomed Pharmacother 2020;131:110708. https://doi.org/10.1016/j.biopha.2020.110708 . (PMID: 10.1016/j.biopha.2020.110708)
Nauck, MA, Meier, JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016;4:525–36. https://doi.org/10.1016/S2213-8587(15)00482-9 . (PMID: 10.1016/S2213-8587(15)00482-9)
Tanase, DM, Gosav, EM, Neculae, E, Costea, CF, Ciocoiu, M, Hurjui, LL, et al.. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients 2020;12:3719. https://doi.org/10.3390/nu12123719 . (PMID: 10.3390/nu12123719)
Nery, C, Moraes, SRA, Novaes, KA, Bezerra, MA, Silveira, PVC, Lemos, A, et al.. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis. Braz J Phys Ther 2017;21:400–15. https://doi.org/10.1016/j.bjpt.2017.06.004 . (PMID: 10.1016/j.bjpt.2017.06.004)
Petrie, MC, Verma, S, Docherty, KF, Inzucchi, SE, Anand, I, Belohlávek, J, et al.. Effect of Dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020;323:1353–68. https://doi.org/10.1001/jama.2020.1906 . (PMID: 10.1001/jama.2020.1906)
Palumbo, C, Nicolaci, N, La Manna, AA, Branek, N, Pissano, MN. Association between central diabetes insipidus and type 2 diabetes mellitus. Medicina 2018;78:127–30.
Palacios, OM, Kramer, M, Maki, KC. Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expet Rev Endocrinol Metabol 2019;14:1–12. https://doi.org/10.1080/17446651.2019.1554430 . (PMID: 10.1080/17446651.2019.1554430)
Dagogo-Jack, S, Santiago, JV. Pathophysiology of type 2 diabetes and modes of action of therapeutic interventions. Arch Intern Med 1997;157:1802–17. https://doi.org/10.1001/archinte.157.16.1802 . (PMID: 10.1001/archinte.157.16.1802)
Mortada, I. Hyperuricemia, Type 2 Diabetes mellitus, and hypertension: an emerging association. Curr Hypertens Rep 2017;19:69. https://doi.org/10.1007/s11906-017-0770-x . (PMID: 10.1007/s11906-017-0770-x)
Agarwal, R, Anker, SD, Bakris, G, Filippatos, G, Pitt, B, Rossing, P, et al.. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finer none. Nephrol Dial Transplant 2022;37:1014–23. https://doi.org/10.1093/ndt/gfaa294 . (PMID: 10.1093/ndt/gfaa294)
Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0 . (PMID: 10.1038/s41440-019-0248-0)
Adriaenssens, AE, Biggs, EK, Darwish, T, Tadross, J, Sukthankar, T, Girish, M, et al.. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metabol 2019;30:987–96.e6. https://doi.org/10.1016/j.cmet.2019.07.013 . (PMID: 10.1016/j.cmet.2019.07.013)
Kamarudin, MNA, Sarker, MMR, Zhou, JR, Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Eexp Clin Cancer Res 2019;38:491. https://doi.org/10.1186/s13046-019-1495-2 . (PMID: 10.1186/s13046-019-1495-2)
Sharma, D, Verma, S, Vaidya, S, Kalia, K, Tiwari, V. Recent updates on GLP-1 agonists: current advancements and challenges. Biomed Pharmacother 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088 . (PMID: 10.1016/j.biopha.2018.08.088)
Musale, V, Abdel-Wahab, YHA, Flatt, PR, Conlon, JM, Mangoni, ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018;50:723–34. https://doi.org/10.1007/s00726-018-2551-5 . (PMID: 10.1007/s00726-018-2551-5)
Burillo, J, Marqués, P, Jiménez, B, González-Blanco, C, Benito, M, Guillén, C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells 2021;10:1236. https://doi.org/10.3390/cells10051236 . (PMID: 10.3390/cells10051236)
DeFronzo, RA, Ferrannini, E, Groop, L, Henry, RR, Herman, WH, Holst, JJ, et al.. Type 2 diabetes mellitus. Nat Rev Dis Prim 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19 . (PMID: 10.1038/nrdp.2015.19)
Hudish, LI, Reusch, JE, Sussel, L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019;129:4001–8. https://doi.org/10.1172/JCI129188 . (PMID: 10.1172/JCI129188)
Taylor, R, Al-Mrabeh, A, Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019;7:726–36. https://doi.org/10.1016/S2213-8587(19)30076-2 . (PMID: 10.1016/S2213-8587(19)30076-2)
Sarparanta, J, García-Macia, M, Singh, R. Autophagy and mitochondria in obesity and type 2 Diabetes. Curr Diabetes Rev 2017;13:352–69. https://doi.org/10.2174/1573399812666160217122530 . (PMID: 10.2174/1573399812666160217122530)
Maiti, R. Hypoglycemic and antioxidant potency of ethyl acetate fraction of hydro-methanolic extract (60:40) of Tamarindus indica Linn. seed in streptozotocin-induced diabetic experimental animal. Int J Health Sci 2021;6:11164–82. https://doi.org/10.53730/ijhs.v6nS5.10964 . (PMID: 10.53730/ijhs.v6nS5.10964)
Maiti, R, Das, UK, Ghosh, D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull 2005;28:1172–6. https://doi.org/10.1248/bpb.28.1172 . (PMID: 10.1248/bpb.28.1172)
Kahn, SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46:3–19. https://doi.org/10.1007/s00125-002-1009-0 . (PMID: 10.1007/s00125-002-1009-0)
Franks, PW, McCarthy, MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354:69–73. https://doi.org/10.1126/science.aaf5094 . (PMID: 10.1126/science.aaf5094)
Lyssenko, V, Lupi, R, Marchetti, P, Del Guerra, S, Orho-Melander, M, Almgren, P, et al.. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007;117:2155–63. https://doi.org/10.1172/JCI30706 .
Tarnowski, M, Malinowski, D, Safranow, K, Dziedziejko, V, Czerewaty, M, Pawlik, A. Haematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes mellitus. Clin Genet 2017;91:843–8. https://doi.org/10.1111/cge.12875 . (PMID: 10.1111/cge.12875)
Wang, J, Kilic, G, Aydin, M, Burke, Z, Oliver, G, Sosa-Pineda, B. Controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells. Dev Biol 2005;286:182–94. https://doi.org/10.1016/j.ydbio.2005.07.021 . (PMID: 10.1016/j.ydbio.2005.07.021)
Franks, PW. Gene × environment interactions in type 2 diabetes. Curr Diabetes Rep 2011;11:552–61. https://doi.org/10.1007/s11892-011-0224-9 . (PMID: 10.1007/s11892-011-0224-9)
Aune, D, Norat, T, Leitzmann, M, Tonstad, S, Vatten, LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 2015;30:529–42. https://doi.org/10.1007/s10654-015-0056-z . (PMID: 10.1007/s10654-015-0056-z)
Shan, Z, Ma, H, Xie, M, Yan, P, Guo, Y, Bao, W, et al.. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2015;38:529–37. https://doi.org/10.2337/dc14-2073 . (PMID: 10.2337/dc14-2073)
Pan, A, Wang, Y, Talaei, M, Hu, FB, Wu, T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015;3:958–67. https://doi.org/10.1016/S2213-8587(15)00316-2 . (PMID: 10.1016/S2213-8587(15)00316-2)
Talaei, M, Wang, YL, Yuan, JM, Pan, A, Koh, WP. Meat, dietary heme iron, and risk of type 2 diabetes mellitus: the Singapore Chinese Health Study. Am J Epidemiol 2017;186:824–33. https://doi.org/10.1093/aje/kwx156 . (PMID: 10.1093/aje/kwx156)
Wallace, MD, Metzger, NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother 2018;52:86–90. https://doi.org/10.1177/1060028017728297 . (PMID: 10.1177/1060028017728297)
Bonaventura, A, Montecucco, F. Steroid-induced hyperglycemia: an underdiagnosed problem or clinical inertia? A narrative review. Diabetes Res Clin Pract 2018;139:203–20. https://doi.org/10.1016/j.diabres.2018.03.006 . (PMID: 10.1016/j.diabres.2018.03.006)
Shah, P, Kalra, S, Yadav, Y, Deka, N, Lathia, T, Jacob, JJ, et al.. Management of glucocorticoid-induced hyperglycemia. Diabetes Metab Syndr Obes 2022;15:1577–88. https://doi.org/10.2147/DMSO.S330253 . (PMID: 10.2147/DMSO.S330253)
Uchinuma, H, Ichijo, M, Harima, N, Tsuchiya, K. Dulaglutide improves glucocorticoid-induced hyperglycemia in inpatient care and reduces dose and injection frequency of insulin. BMC Endocr Disord 2020;20:58. https://doi.org/10.1186/s12902-020-0542-5 . (PMID: 10.1186/s12902-020-0542-5)
Do, TTH, Marie, G, Héloïse, D, Guillaume, D, Marthe, M, Bruno, F, et al.. Glucocorticoid-induced insulin resistance is related to macrophage visceral adipose tissue infiltration. J Steroid Biochem Mol Biol 2019;185:150–62. https://doi.org/10.1016/j.jsbmb.2018.08.010 . (PMID: 10.1016/j.jsbmb.2018.08.010)
vanBommel, EJM, de Jongh, RT, Brands, M, Heijboer, AC, den Heijer, M, Serlie, MJ, et al.. The osteoblast: linking glucocorticoid-induced osteoporosis and hyperglycaemia? A post-hoc analysis of a randomised clinical trial. Bone 2018;112:173–6. https://doi.org/10.1016/j.bone.2018.04.025 . (PMID: 10.1016/j.bone.2018.04.025)
Merkofer, F, Struja, T, Delfs, N, Spagnuolo, CC, Hafner, JF, Kupferschmid, K, et al.. Glucose control after glucocorticoid administration in hospitalized patients – a retrospective analysis. BMC Endocr Disord 2022;22:8. https://doi.org/10.1186/s12902-021-00914-3 . (PMID: 10.1186/s12902-021-00914-3)
Nunes, EA, Gonçalves-Neto, LM, Ferreira, FB, dos Santos, C, Fernandes, LC, Boschero, AC, et al.. Glucose intolerance induced by glucocorticoid excess is further impaired by co-administration with β-hydroxy-β-methylbutyrate in rats. Appl Physiol Nutr Metabol 2013;38:1137–46. https://doi.org/10.1139/apnm-2012-0456 . (PMID: 10.1139/apnm-2012-0456)
Gado, M, Heinrich, A, Wiedersich, D, Sameith, K, Dahl, A, Alexaki, VI, et al.. Activation of β-adrenergic receptor signaling prevents glucocorticoid-induced obesity and adipose tissue dysfunction in male mice. Am J Physiol Endocrinol Metab 2023;324:E514–30. https://doi.org/10.1152/ajpendo.00259.2022 . (PMID: 10.1152/ajpendo.00259.2022)
Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0 . (PMID: 10.1038/s41440-019-0248-0)
Dayeh, T, Ling, C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015;93:511–21. https://doi.org/10.1139/bcb-2015-0057 . (PMID: 10.1139/bcb-2015-0057)
Karachanak-Yankova, S, Dimova, R, Nikolova, D, Nesheva, D, Koprinarova, M, Maslyankov, S, et al.. Epigenetic alterations in patients with type 2 diabetes mellitus. Balkan J Med Genet 2016;18:15–24. https://doi.org/10.1515/bjmg-2015-0081 . (PMID: 10.1515/bjmg-2015-0081)
Moosavi, A, Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran Biomed J 2016;20:246–58. https://doi.org/10.22045/ibj.2016.01 . (PMID: 10.22045/ibj.2016.01)
Luo, A, Xie, Z, Wang, Y, Wang, X, Li, S, Yan, J, et al.. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022;137:104642. https://doi.org/10.1016/j.neubiorev.2022.104642 . (PMID: 10.1016/j.neubiorev.2022.104642)
Cao, H, Baranova, A, Wei, X, Wang, C, Zhang, F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol 2023;95:e28100. https://doi.org/10.1002/jmv.28100 . (PMID: 10.1002/jmv.28100)
Xue, A, Wu, Y, Zhu, Z, Zhang, F, Kemper, KE, Zheng, Z, et al.. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018;9:2941. https://doi.org/10.1038/s41467-018-04951-w . (PMID: 10.1038/s41467-018-04951-w)
Liu, Z, Dai, X, Zhang, H, Shi, R, Hui, Y, Jin, X, et al.. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 2020;11:855. https://doi.org/10.1038/s41467-020-14676-4 . (PMID: 10.1038/s41467-020-14676-4)
Cefalu, WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med 2001;226:13–26. https://doi.org/10.1177/153537020122600103 . (PMID: 10.1177/153537020122600103)
Trümper, A, Trümper, K, Trusheim, H, Arnold, R, Göke, B, Hörsch, D. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001;15:1559–70. https://doi.org/10.1210/mend.15.9.0688 . (PMID: 10.1210/mend.15.9.0688)
Schirra, J, Katschinski, M, Weidmann, C, Schäfer, T, Wank, U, Arnold, R, et al.. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Investig 1996;97:92–103. https://doi.org/10.1172/JCI118411 . (PMID: 10.1172/JCI118411)
Kim, W, Egan, JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470–512. https://doi.org/10.1124/pr.108.000604 . (PMID: 10.1124/pr.108.000604)
Gérard, C, Vidal, H. Impact of gut microbiota on host glycemic control. Front Endocrinol 2019;10:29. https://doi.org/10.3389/fendo.2019.00029 . (PMID: 10.3389/fendo.2019.00029)
Lewis, DM. A Systematic review of exocrine pancreatic insufficiency prevalence and treatment in type 1 and type 2 diabetes. Diabetes Technol Therapeut 2023;25:659–72. https://doi.org/10.1089/dia.2023.0157 . (PMID: 10.1089/dia.2023.0157)
Kong, D, Vong, L, Parton, LE, Ye, C, Tong, Q, Hu, X, et al.. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabol 2010;12:545–52. https://doi.org/10.1016/j.cmet.2010.09.013 . (PMID: 10.1016/j.cmet.2010.09.013)
Mergenthaler, P, Lindauer, U, Dienel, GA, Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013;36:587–97. https://doi.org/10.1016/j.tins.2013.07.001 . (PMID: 10.1016/j.tins.2013.07.001)
Macedo, MP, Lima, IS, Gaspar, JM, Afonso, RA, Patarrão, RS, Kim, YB, et al.. Risk of postprandial insulin resistance: the liver/vagus rapport. Rev Endocr Metab Disord 2014;15:67–77. https://doi.org/10.1007/s11154-013-9281-5 . (PMID: 10.1007/s11154-013-9281-5)
Yoon, NA, Diano, S. Hypothalamic glucose-sensing mechanisms. Diabetologia 2021;64:985–93. https://doi.org/10.1007/s00125-021-05395-6 . (PMID: 10.1007/s00125-021-05395-6)
Henriksen, EJ, Diamond-Stanic, MK, Marchionne, EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 2011;51:993–9. https://doi.org/10.1016/j.freeradbiomed.2010.12.005 . (PMID: 10.1016/j.freeradbiomed.2010.12.005)
Chan, O, Sherwin, R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metabol 2013;24:616–24. https://doi.org/10.1016/j.tem.2013.08.005 . (PMID: 10.1016/j.tem.2013.08.005)
Azzalin, A, Nato, G, Parmigiani, E, Garello, F, Buffo, A, Magrassi, L, et al.. Inhibitors of GLUT/SLC2A enhance the action of BCNU and temozolomide against high-grade gliomas. Neoplasia 2017;19:364–73. https://doi.org/10.1016/j.neo.2017.02.009 . (PMID: 10.1016/j.neo.2017.02.009)
Tilekar, K, Upadhyay, N, Hess, JD, Macias, LH, Mrowka, P, Aguilera, RJ, et al.. anti-leukemic potential. Eur J Med Chem 2020;202:112603. https://doi.org/10.1016/j.ejmech.2020.112603 . (PMID: 10.1016/j.ejmech.2020.112603)
Reckzeh, ES, Waldmann, H. Development of glucose transporter (GLUT) inhibitors. Eur J Org Chem 2020;2020:2321–9. https://doi.org/10.1002/ejoc.201901353 . (PMID: 10.1002/ejoc.201901353)
Kitagawa, M, Ikeda, S, Tashiro, E, Soga, T, Imoto, M. Metabolomic identification of the target of the filopodia protrusion inhibitor glucopiericidin A. Chem Biol 2010;17:989–98. https://doi.org/10.1016/j.chembiol.2010.06.017 . (PMID: 10.1016/j.chembiol.2010.06.017)
Kasahara, T, Kasahara, M. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J 1996;315:177–82. https://doi.org/10.1042/bj3150177 . (PMID: 10.1042/bj3150177)
Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Therapeut 2012;11:1672–82. https://doi.org/10.1158/1535-7163.MCT-12-0131 . (PMID: 10.1158/1535-7163.MCT-12-0131)
Caruso, MA, Sheridan, MA. The expression of insulin and insulin receptor mRNAs is regulated by nutritional state and glucose in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2012;175:321–8. https://doi.org/10.1016/j.ygcen.2011.11.029 . (PMID: 10.1016/j.ygcen.2011.11.029)
Vajo, Z, Duckworth, WC. Genetically engineered insulin analogs: diabetes in the new millennium. Pharmacol Rev 2000;52:1–9.
Vajo, Z, Fawcett, J, Duckworth, WC. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev 2001;22:706–17. https://doi.org/10.1210/edrv.22.5.0442 . (PMID: 10.1210/edrv.22.5.0442)
Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8 . (PMID: 10.1038/s41467-020-18414-8)
Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. Biomedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051 . (PMID: 10.1016/j.ebiom.2019.11.051)
Sharma, S, Tripathi, P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem 2019;63:101–8. https://doi.org/10.1016/j.jnutbio.2018.10.003 . (PMID: 10.1016/j.jnutbio.2018.10.003)
Zhou, Z, Sun, B, Yu, D, Zhu, C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol 2022;12:834485. https://doi.org/10.3389/fcimb.2022.834485 . (PMID: 10.3389/fcimb.2022.834485)
Scheithauer, TPM, Rampanelli, E, Nieuwdorp, M, Vallance, BA, Verchere, CB, van Raalte, DH, et al.. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol 2020;11:571731. https://doi.org/10.3389/fimmu.2020.571731 . (PMID: 10.3389/fimmu.2020.571731)
Yang, G, Wei, J, Liu, P, Zhang, Q, Tian, Y, Hou, G, et al.. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021;117:154712. https://doi.org/10.1016/j.metabol.2021.154712 . (PMID: 10.1016/j.metabol.2021.154712)
Qi, Q, Li, J, Yu, B, Moon, JY, Chai, JC, Merino, J, et al.. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022;71:1095–105. https://doi.org/10.1136/gutjnl-2021-324053 . (PMID: 10.1136/gutjnl-2021-324053)
Muñoz-Garach, A, Diaz-Perdigones, C, Tinahones, FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 2016;63:560–8. https://doi.org/10.1016/j.endonu.2016.07.008 . (PMID: 10.1016/j.endonu.2016.07.008)
Zhai, L, Wu, J, Lam, YY, Kwan, HY, Bian, ZX, Wong, HLX. Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. Int J Mol Sci 2021;22:12846. https://doi.org/10.3390/ijms222312846 . (PMID: 10.3390/ijms222312846)
Hosomi, K, Saito, M, Park, J, Murakami, H, Shibata, N, Ando, M, et al.. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun 2022;13:4477. https://doi.org/10.1038/s41467-022-32015-7 . (PMID: 10.1038/s41467-022-32015-7)
Salgaço, MK, Oliveira, LGS, Costa, GN, Bianchi, F, Sivieri, K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 2019;103:9229–38. https://doi.org/10.1007/s00253-019-10156-y . (PMID: 10.1007/s00253-019-10156-y)
Cui, A, Fan, H, Zhang, Y, Zhang, Y, Niu, D, Liu, S, et al.. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest 2019;129:2266–78. https://doi.org/10.1172/JCI66062 . (PMID: 10.1172/JCI66062)
Elena, C, Chiara, M, Angelica, B, Chiara, MA, Laura, N, Chiara, C, et al.. Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: revision of literature and personal considerations. Curr Pharm Biotechnol 2018;19:1210–20. https://doi.org/10.2174/1389201020666190102145305 . (PMID: 10.2174/1389201020666190102145305)
Brooks, D, Schulman-Rosenbaum, R, Griff, M, Lester, J, Low Wang, CC. Glucocorticoid-induced hyperglycemia including dxamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract 2022;28:1166–77. https://doi.org/10.1016/j.eprac.2022.07.014 . (PMID: 10.1016/j.eprac.2022.07.014)
Stone, AC, Dungan, K, Gaborcik, JW. Insulin NPH for steroid-induced hyperglycemia: predictors for success. Pharmacother 2021;41:804–10. https://doi.org/10.1002/phar.2616 . (PMID: 10.1002/phar.2616)
Brady, VJ, Grimes, D, Armstrong, T, LoBiondo-Wood, G. Management of steroid-induced hyperglycemia in hospitalized patients with cancer: a review. Oncol Nurs Forum 2014;41:E355–65. https://doi.org/10.1188/14.ONF.E355-E365 . (PMID: 10.1188/14.ONF.E355-E365)
Fathallah, N, Slim, R, Larif, S, Hmouda, H, Ben Salem, C. Drug-induced hyperglycaemia and diabetes. Drug Saf 2015;38:1153–68. https://doi.org/10.1007/s40264-015-0339-z . (PMID: 10.1007/s40264-015-0339-z)
Myers, AK, Khan, M, Choi, S, Garnica, P, Stoffels, G, Lin, A, et al.. Implementation of a weight-based protocol for the management of steroid-induced hyperglycemia. Am J Therapeut 2020;27:e392–9. https://doi.org/10.1097/MJT.0000000000000998 . (PMID: 10.1097/MJT.0000000000000998)
Lu, Y, Wang, E, Chen, Y, Zhou, B, Zhao, J, Xiang, L, et al.. Obesity-induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J Clin Invest 2020;130:3791–804. https://doi.org/10.1172/JCI134485 . (PMID: 10.1172/JCI134485)
Dutcher, JM, Creswell, JD. The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev 2018;95:559–67. https://doi.org/10.1016/j.neubiorev.2018.10.014 . (PMID: 10.1016/j.neubiorev.2018.10.014)
de Vos, WM, Tilg, H, Van Hul, M, Cani, PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020–32. https://doi.org/10.1136/gutjnl-2021-326789 . (PMID: 10.1136/gutjnl-2021-326789)
Iatcu, CO, Steen, A, Covasa, M. Gut microbiota and complications of type-2 diabetes. Nutritients 2021;14:166. https://doi.org/10.3390/nu14010166 . (PMID: 10.3390/nu14010166)
Makki, K, Deehan, EC, Walter, J, Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23:705–15. https://doi.org/10.1016/j.chom.2018.05.012 . (PMID: 10.1016/j.chom.2018.05.012)
Cani, PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67:1716–25. https://doi.org/10.1136/gutjnl-2018-316723 . (PMID: 10.1136/gutjnl-2018-316723)
Rodrigues, VF, Elias-Oliveira, J, Pereira, ÍS, Pereira, JA, Barbosa, SC, Machado, MSG, et al.. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol 2022;13:934695. https://doi.org/10.3389/fimmu.2022.934695 . (PMID: 10.3389/fimmu.2022.934695)
Singer-Englar, T, Barlow, G, Mathur, R. Obesity, diabetes, and the gut microbiome: an updated review. Expet Rev Gastroenterol Hepatol 2019;13:3–15. https://doi.org/10.1080/17474124.2019.1543023 . (PMID: 10.1080/17474124.2019.1543023)
Hasani, A, Ebrahimzadeh, S, Hemmati, F, Khabbaz, A, Gholizadeh, P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J Med Microbiol 2021;70:10–109. https://doi.org/10.1099/jmm.0.001435 . (PMID: 10.1099/jmm.0.001435)
Sehgal, R, de Mello, VD, Männistö, V, Lindström, J, Tuomilehto, J, Pihlajamäki, J, et al.. Indole propionic acid, a gut bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease. Nutrition 2022;14:4695. https://doi.org/10.3390/nu14214695 . (PMID: 10.3390/nu14214695)
Hasain, Z, Mokhtar, NM, Kamaruddin, NA, Mohamed Ismail, NA, Razalli, NH, Gnanou, JV, et al.. Gut Microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol 2020;10:188. https://doi.org/10.3389/fcimb.2020.00188 . (PMID: 10.3389/fcimb.2020.00188)
Letchumanan, G, Abdullah, N, Marlini, M, Baharom, N, Lawley, B, Omar, MR, et al.. Gut microbiota composition in prediabetes and newly diagnosed type 2 diabetes: a systematic review of observational studies. Front Cell Infect Microbiol 2022;12:943427. https://doi.org/10.3389/fcimb.2022.943427 . (PMID: 10.3389/fcimb.2022.943427)
Mokkala, K, Paulin, N, Houttu, N, Koivuniemi, E, Pellonperä, O, Khan, S, et al.. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut 2021;70:309–18. https://doi.org/10.1136/gutjnl-2020-321643 . (PMID: 10.1136/gutjnl-2020-321643)
Jardon, KM, Canfora, EE, Goossens, GH, Blaak, EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022;71:1214–26. https://doi.org/10.1136/gutjnl-2020-323715 . (PMID: 10.1136/gutjnl-2020-323715)
Das, S, Maiti, R, Ghosh, D. Induction of oxidative stress on reproductive and metabolic organs in sodium fluoride-treated male albino rats: protective effect of testosterone and vitamin e coadministration. Toxicol Mech Methods 2005;15:271–7. https://doi.org/10.1080/15376520590968824 . (PMID: 10.1080/15376520590968824)
Bordalo Tonucci, L, Dos Santos, KM, De Luces Fortes Ferreira, CL, Ribeiro, SM, De Oliveira, LL, Martino, HSD. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017;57:2296–309. https://doi.org/10.1080/10408398.2014.934438 . (PMID: 10.1080/10408398.2014.934438)
Banerjee, P, Adhikary, K, Chatterjee, A, Sarkar, R, Bagchi, D, Ghosh, N, et al.. Digestion and gut microbiome. In: Bagchi, D, Ohia, S, editors. Nutrition and functional foods in boosting digestion, metabolism and immune health . United Kingdom: Academic Press; 2021:123–38 pp.
Chowdhury, M, Chowdhury, S, Bhattacherjee, A, Roy, C, Sarkar, R, Adhikary, K, et al.. Natural antioxidants and nutraceuticals to fight against common human diseases: an overview. Eur Chem Bull 2023;12:1505–21. https://doi.org/10.48047/ecb . (PMID: 10.48047/ecb)
Adhikary, K, Chatterjee, A, Banerjee, P. An updated review on nanomaterials for biomedical advancements: concepts and applications. Biosci Biotech Res Commun 2021;14:1428–34. https://doi.org/10.21786/bbrc/14.4.9 . (PMID: 10.21786/bbrc/14.4.9)
Adhikary, K, Mohanty, S, Bandyopadhyay, B, Maiti, R, Bhattacharya, K, Karak, P. β-Amyloid peptide modulates peripheral immune responses and neuroinflammation in rats. Biomol Concepts 2024;15:20220042. https://doi.org/10.1515/bmc-2022-0042 . (PMID: 10.1515/bmc-2022-0042)
Bhattacharya, K, Dey, R, Sen, D, Paul, N, Basak, AK, Purkait, MP, et al.. Polycystic ovary syndrome and its management: in view of oxidative stress. Biomol Concepts 2024;15. https://doi.org/10.1515/bmc-2022-0038 . (PMID: 10.1515/bmc-2022-0038)
Mallick, S, Mandal, M, Roy, S, Pradhan, S, Mandal, S, Maiti, R, et al.. Effect of phytosterol extract from sesame seed on experimentally induced hyperlipidemic rats: dose dependent study. Int J Pharma Bio Sci 2016;7:370–7.
Tiwari, PN, Rehman, A, Sreedhar, C, Jahan, ZA, Kundavaram, R, Bhattacharyya, I, et al.. Development and Validation of an RP-HPLC Method for the determination of rifapentine in bulk and pharmaceutical dosage form. Eur Chem Bull 2022;12:4114–28. https://doi.org/10.48047/ecb/2023.12.7.346 . (PMID: 10.48047/ecb/2023.12.7.346)
Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051 . (PMID: 10.1016/j.ebiom.2019.11.051)
Li, SX, Guo, Y. Gut microbiome: new perspectives for type 2 diabetes prevention and treatment. World J Clin Cases 2023;11:7508–20. https://doi.org/10.12998/wjcc.v11.i31.7508 . (PMID: 10.12998/wjcc.v11.i31.7508)
Li, Y, Xia, S, Jiang, X, Feng, C, Gong, S, Ma, J, et al.. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol 2021;15:625210. https://doi.org/10.3389/fcimb.2021.625210 . (PMID: 10.3389/fcimb.2021.625210)
Iatcu, CO, Steen, A, Covasa, M. Gut Microbiota and complications of type-2 diabetes. Nutrients 2021;30:166. https://doi.org/10.3390/nu14010166 . (PMID: 10.3390/nu14010166)
Shurrab, NT, Arafa, E-SA. Metformin: a review of its therapeutic efficacy and adverse effects. Obes Med 2020;17:100186. https://doi.org/10.1016/j.obmed.2020.100186 . (PMID: 10.1016/j.obmed.2020.100186)
Sola, D, Rossi, L, Schianca, GPC, Maffioli, P, Bigliocca, M, Mella, R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 12:840–8. https://doi.org/10.5114/aoms.2015.53304 . (PMID: 10.5114/aoms.2015.53304)
Saito, T, Ohashi, K, Utoh, R, Shimizu, H, Ise, K, Suzuki, H, et al.. Reversal of diabetes by the creation of neo-islet tissues into a subcutaneous site using islet cell sheets. Transplantation 2011;92:1231–6. https://doi.org/10.1097/TP.0b013e3182375835 . (PMID: 10.1097/TP.0b013e3182375835)
Oukes, T, Blauw, H, van Bon, AC, DeVries, JH, von Raesfeld, AM. Acceptance of the artificial pancreas: comparing the effect of technology readiness, product characteristics, and social influence between invited and self-selected respondents. J Diabetes Sci Technol 2019;13:899–909. https://doi.org/10.1177/1932296818823728 . (PMID: 10.1177/1932296818823728)
Shin, H, Jo, S, Mikos, AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–64. https://doi.org/10.1016/S0142-9612(03)00339-9 . (PMID: 10.1016/S0142-9612(03)00339-9)
Jaén, ML, Vilà, L, Elias, I, Jimenez, V, Rodó, J, Maggioni, L, et al.. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther Methods Clin Dev 2017;6:1–7. https://doi.org/10.1016/j.omtm.2017.03.008 . (PMID: 10.1016/j.omtm.2017.03.008)
Sheridan, SD, Surampudi, V, Rao, RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cell Int 2012;2012:738910. https://doi.org/10.1155/2012/738910 . (PMID: 10.1155/2012/738910)
Won, G, Choi, SI, Kang, CH, Kim, GH. Lactiplanti bacillus plantarum MG4296 and Lacticaseibacillus paracasei MG5012 Ameliorates insulin resistance in Palmitic Acid-Induced HepG2 Cells and High fat diet-induced mice. Microorganisms 2021;9:1139. https://doi.org/10.3390/microorganisms9061139 . (PMID: 10.3390/microorganisms9061139)
Zhao, S, Liu, W, Wang, J, Shi, J, Sun, Y, Wang, W, et al.. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 2017;58:1–14. https://doi.org/10.1530/JME-16-0054 . (PMID: 10.1530/JME-16-0054)
Waisundara, VY, Siu, SY, Hsu, A, Huang, D, Tan, BK. Baicalin upregulates the genetic expression of antioxidant enzymes in type-2 diabetic goto-kakizaki rats. Life Sci 2011;88:1016–25. https://doi.org/10.1016/j.lfs.2011.03.009 . (PMID: 10.1016/j.lfs.2011.03.009)
Tao, Y, Mao, X, Xie, Z, Ran, X, Liu, X, Wang, Y, et al.. The prevalence of type 2 diabetes and hypertension in uygur and kazak populations. Cardiovasc Toxicol 2008;8:155–9. https://doi.org/10.1007/s12012-008-9024-0 . (PMID: 10.1007/s12012-008-9024-0)
Brodmann, T, Endo, A, Gueimonde, M, Vinderola, G, Kneifel, W, de Vos, WM, et al.. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front Microbiol 2017;8:1725. https://doi.org/10.3389/fmicb.2017.01725 . (PMID: 10.3389/fmicb.2017.01725)
Huda, MN, Kim, M, Bennett, BJ. Modulating the microbiota as a therapeutic intervention for type 2 diabetes. Front Endocrinol 2021;7:12:632335. https://doi.org/10.3389/fendo.2021.632335 . (PMID: 10.3389/fendo.2021.632335)
Schrezenmeir, J, de Vrese, M. Probiotics, prebiotics, and synbiotics–approaching definition. Am J Clin Nutr 2001;73:361S–4S. https://doi.org/10.1093/ajcn/73.2.361s . (PMID: 10.1093/ajcn/73.2.361s)
Markowiakśliżewska, PK, Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021. https://doi.org/10.3390/nu9091021 . (PMID: 10.3390/nu9091021)
Kechagia, M, Basoulis, D, Konstantopoulou, S, Dimitriadi, D, Gyftopoulou, K, Skarmoutsou, N, et al.. Health benefits of probiotics: a review. Int Scholar lyres Notices 2013;2013:1–7. https://doi.org/10.5402/2013/481651 . (PMID: 10.5402/2013/481651)
Li, K, Zhang, L, Xue, J, Yang, X, Dong, X, Sha, L, et al.. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/dbmice. Food Funct 2019;10:1915–27. https://doi.org/10.1039/C8FO02265H . (PMID: 10.1039/C8FO02265H)
Verhoog, S, Taneri, PE, Roa Diaz, ZM, Marques-Vidal, P, Troup, JP, Bally, L, et al.. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and faecal bacterium prausnitzii: a systematic review. Nutrients 2019;11:1565. https://doi.org/10.3390/nu11071565 . (PMID: 10.3390/nu11071565)
Zhang, Y, Gu, Y, Ren, H, Wang, S, Zhong, H, Zhao, X, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTEstudy). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8 . (PMID: 10.1038/s41467-020-18414-8)
Mukherjee, T, Das, T, Basak, S, Mohanty, S, Adhikary, K, Chatterjee, P, et al.. Mucormycosis during COVID-19 era: a retrospective assessment. Infect Med 2024;100112. https://doi.org/10.1016/j.imj.2024.100112 . (PMID: 10.1016/j.imj.2024.100112)
Mahboobi, S, Rahimi, F, Jafarnejad, S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: AMeta-analysis of randomized controlled trials. Adv Pharmaceut Bull 2018;8:565–74. https://doi.org/10.15171/apb.2018.065 . (PMID: 10.15171/apb.2018.065)
فهرسة مساهمة: Keywords: chronic neuropathy; glucose transporter; gut bacteria; modified insulin; type 2 diabetes mellitus
تواريخ الأحداث: Date Created: 20240515 Date Completed: 20240704 Latest Revision: 20240802
رمز التحديث: 20240802
DOI: 10.1515/jbcpp-2024-0043
PMID: 38748886
قاعدة البيانات: MEDLINE
الوصف
تدمد:2191-0286
DOI:10.1515/jbcpp-2024-0043