دورية أكاديمية

Silver sulphide nanoparticles (Ag 2 SNPs) synthesized using Phyllanthus emblica fruit extract for enhanced antibacterial and antioxidant properties.

التفاصيل البيبلوغرافية
العنوان: Silver sulphide nanoparticles (Ag 2 SNPs) synthesized using Phyllanthus emblica fruit extract for enhanced antibacterial and antioxidant properties.
المؤلفون: Renuka R; Department of Physics, Government Arts College for Women (Autonomous), Pudukkottai, India., Thilagavathi T; Department of Physics, Government College for Women (Autonomous), Kumbakonam, India., Inmozhi C; Department of Physics, Government Arts College for Women, Salem, India., Uthrakumar R; Department of Physics, Government Arts College (Autonomous), Salem, India., Gobi G; Department of Physics, Government Arts College (Autonomous), Salem, India., Kaviyarasu K; UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa., Al-Sowayan NS; Department of Biology, College of Science, Qassim University, Buraydah, Saudi Arabia., Mir TA; Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplantation Research & Innovation (Dpt)-R, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia., Alam MW; Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
المصدر: Microscopy research and technique [Microsc Res Tech] 2024 May 16. Date of Electronic Publication: 2024 May 16.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مستخلص: In this study, silver sulfide nanoparticles (Ag 2 SNP's) were successfully produced by using fruit extracts of Phyllanthus emblica. UV-vis, FTIR, XRD with SEM and EDX techniques were used for the synthesis process and for characterization of the resulting nanostructures. According to the findings, the fabricated nanostructure had a monoclinic crystal structure, measuring 44 nm in grain size, and its strain was 1.82 × 10 -3 . As revealed by SEM analysis, the synthesized nanostructure consists of irregular spherical and triangular shapes. The presence of silver (Ag) and sulfur (S) was also confirmed through EDX spectra. Furthermore, Ag 2 S nanoparticles were tested for their ability to effectively inhibit gram-positive and gram-negative bacterial growth. As a result of this study, it was clearly demonstrated that Ag 2 S nanoparticles possess powerful antibacterial properties, particularly when it came to inhibiting Escherichia coli growth. Ag 2 S nanoparticles had high total H 2 O 2 and flavonoid concentrations and the greatest overall antioxidant activity, according to the evaluation of antioxidant activity of the samples. The results obtained from the P. emblica fruit extract were followed by those obtained from Ag 2 S nanoparticles were reported in detail. RESEARCH HIGHLIGHTS: Innovative Ag 2 SNP synthesis using Phyllanthus emblica fruit extract. SEM with EDX revealed a monoclinic crystal structure with a grain size of 44 nm and a strain of 1.82 × 10 -3 . Many of these applications are demonstrated by the potential of Ag 2 SNPs to treat and combat bacteria, particularly Escherichia coli. A peak at 653 cm -1 indicates the presence of primary sulfide aliphatic C-S extension vibrations. The abundant H 2 O 2 and NO 2 found in P. emblica nanocomposites make them potent antioxidants.
(© 2024 Wiley Periodicals LLC.)
References: Abed, A. H., Khodair, Z. T., & Al‐Saadi, T. M. (2019). Study the evaluation of Williamson–Hall (W‐H) strain distribution in silver nanoparticles prepared by sol‐gel method. Environmental Sustainability, 2123, 200191–200198.
Angel Ezhilarasi, A., & Judith Vijaya, J. (2020). Green mediated NiO nano‐rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Materials Chemistry and Physics, 241, 122419.
Arularasu, M. V., Venkatadri, B., Muthukrishnaraj, A., Rajendran, T. V., Qi, K., & Kaviyarasu, K. (2023). H2O2 scavenging and biocompatibility assessment of biosynthesized cellulose/Fe3O4 nanocomposite showed superior antioxidant properties with increasing concentration. Journal of Molecular Structure, 1289, 135838.
Awwad, A. M., Salem, N. M., Aqarbeh, M. M., & Abdulaziz, F. M. (2020). Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chemistry International, 6, 42–48.
Ayodhya, D., & Veerabhadram, G. (2016). Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. Photochemistry and Photobiology, 157, 57–69.
Fakhri, A., Pourmand, M., Khakpour, R., & Behrouz, S. (2015). Structural, optical, photoluminescence and antibacterial properties of copper‐doped silver sulfide nanoparticles. Journal of Photochemistry and Photobiology B, 149, 78–83.
George, A., Dhayal Raj, A., Albert Irudayaraj, A., John Sundaram, S., Rajakrishnan, R., Kuppusamy, P., & Kaviyarasu, K. (2022). Regeneration study of MB in recycling runs over nickel vanadium oxide by solvent extraction for photocatalytic performance for wastewater treatments. Environmental Research, 211, 112970.
Hamouda, R. A., Hussein, M. H., Abo‐elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9, 11–17.
Hashmi, L., Malik, M., Qureshi, M. S., Dubeyd, R. N., Alim, I., & Siddiqui, A. H. (2010). Synthesis and characterization of silver sulfide nanoparticles of various morphologies using chitosan as stabilizer. AIP Conference Proceedings, 1276, 62–69.
Jadhav, U. M., Patel, S. N., & Patil, R. S. (2013). Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications. Research Journal of Chemical Sciences, 3, 69–74.
Janani, M., Gomathi, T., & Babujanarthanam, R. (2023). An evaluation of the biological activity of zinc oxide nanoparticles fabricated from aqueous bark extracts of Acacia nilotica. Journal of King Saud University, Science, 35, 102753.
Jayaprakash, N., Kombaiah, K., John Kennedy, L., Jothi Ramalingam, R., & Al‐Lohedan, H. A. (2017). Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178–185.
Joy Prabu, H., Varghese, R., Johnson, I., John Sundaram, S., Dhayal Raj, A., & Rengasamy Sathya, K. (2022). Laser induced plant leaf extract mediated synthesis of CuO nanoparticles and its photocatalytic activity. Environmental Research, 212, 113295.
Kalaiyarasi, M., Nivedha, M., & Mani, M. (2024). Synthesis of CuO/NaCuSO4 nanocomposite using an aqueous extract of Tribulus terrestris and their structural, optical, morphology and dielectric studies. Chemical Papers, 78, 3083–3098.
Kumari, P., Chandran, P., & Khan, S. (2014). RETRACTED: Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications. Journal of Photochemistry and Photobiology B, 141, 235–240.
Lal Banerjee, S., Kamrai, M., Sarkar, K., Singha, N. K., & Kundu, P. P. (2016). Modified chitosan encapsulated core‐shell Ag Nps for superior antimicrobial and anticancer activity. International Journal of Biological Macromolecules, 85, 157–167.
Lalitha, A., Subbaiya, R., & Ponmurugan, P. (2013). Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti‐bacterial and antioxidant property. International Journal of Current Microbiology and Applied Sciences, 2, 228–235.
Logambal, S., Chandrasekar, M., Ashok Kumar, R., Inmozhi, C., Aravindan, S., Uthrakumar, R., Naveenkumar, S., Muthukumaran, A., & Kaviyarasu, K. (2024). Biosynthesis of PbO nanoparticles via Adhatoda vesica (Justicia adhatoda) leaves extract for antimicrobial and photocatalytic applications. Journal of King Saud University, Science, 36, 103169.
Logambal, S., Thilagavathi, T., Chandrasekar, M., Inmozhi, C., Belle Ebanda Kedi, P., Bassyouni, F. A., Uthrakumar, R., & Muthukumaran, A. (2023). Synthesis and antimicrobial activity of silver nanoparticles: Incorporated Couroupita guianensis flower petal extract for biomedical applications. Journal of King Saud University, Science, 35, 102455.
Mani, M., Okla, M. K., Selvaraj, S., Ram Kumar, A., Kumaresan, S., Elbadawi, Y. B., Almaary, K. S., Almunqedhi, B. M. A., & Elshikh, M. S. (2021). A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF‐7 cell line. Environmental Research, 198, 111199.
Martinez‐Castanon, G. A., Sanchez‐Loredo, M. G., Dorantes, H. J., Zarzosa, O., & Ruiz, F. (2005). Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Materials Letters, 59, 529–534.
Mavinakere Ramesh, A., Purushotham, D., Kodandaram, A., Shilpa, N., Brijesh Singh, S., Aiyaz, M., Gajendramurthy Gowtham, H., Rahdar, A., Kasinathan, K., & Murali, M. (2023). Visible light driven photocatalytic and competent antioxidant properties of phyto‐fabricated zinc oxide nanoparticles (ZnO‐NPs) from Borreria hispida. Journal of Molecular Structure, 1293, 136152.
Najeeb, M. W. A., Naeem, J., Usman, S., Nahvi, S. M., Alismail, I., Abuzir, F., Farhan, A., & Nawaz, A. (2022). Electrochemical methodologies for investigating the antioxidant potential of plant and fruit extracts: A review. Antioxidants, 11(6), 1205.
Nivetha, A., Sakthivel, C., Hemalatha, J., Senthamila, C., & Prabha, I. (2023). Fabrication of a bifunctionalyzed Calotropis gigantea inspired Ag–Cu–Co trimetal oxide for the remediation of methylene blue, and its larvicidal and antibacterial applications. New Journal of Chemistry, 47, 12375–12392.
Nivetha, A., Sakthivel, C., Rajagopal, G., Nandhabala, S., Hemalatha, J., Senthamil, C., & Prabha, I. (2022). A novel approach of Phyllanthus niruri supported Ag‐Cu‐Co for anti‐oxidant, anti‐bacterial, larvicidal and photodegradation applications. Surfaces and Interfaces, 35, 102388.
Radhakrishnan, R., Ali Khan, F. L., Muthu, A., Manokaran, A., Sundaram Savarenathan, J., & Kasinathan, K. (2021). Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Letters in Applied NanoBioscience, 10, 2706–2714.
Rahman, S., Rahman, L., & Khalil, A. T. (2019). Endophyte‐mediated synthesis of silver nanoparticles and their biological applications. Applied Microbiology and Biotechnology, 103, 2551–2569.
Ramesh, R., Catherine, G., John Sundaram, S., Khan, F. L. A., & Kaviyarasu, K. (2021). Synthesis of Mn3O4 nano complex using aqueous extract of Helianthus annuus seed cake and its effect on biological growth of Vigna radiata. Materials Today Proceedings, 36, 184–191.
Ramesh, R., Yamini, V., John Sundaram, S., Khan, F. L. A., & Kaviyarasu, K. (2021). Investigation of structural and optical properties of NiO nanoparticles mediated by Plectranthus amboinicus leaf extract. Materials Today Proceedings, 36, 268–272.
Renuka, R., Renuka Devi, K., & Sivakami, M. (2020). Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology, 24, 101567.
Sadovnikov, S. I., & Gusev, A. I. (2016). Structure and properties of Ag2S/Ag semiconductor/metal heteronanostructure. Journal of Nanotechnology and Materials Science, 3, 27–36.
Thomas, B., Vithiya, B., Prasad, T., Mohamed, S. B., & Maria Magdalane, C. (2019). Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. Journal of Nanoscience and Nanotechnology, 19, 2640–2648.
Torabi, P., & Moradian, M. (2019). Preparation of Ag2S Nanoparticles and using as Catalyst for the A3‐coupling (Aldehyde‐Amine‐Alkyne) Reaction. Journal of Nanostructures, 9, 478–488.
Valsalam, S., Agastian, P., Valan Arasu, M., Abdullah Al‐Dhabi, N., Woong Chang, S., & Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in‐vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65–74.
Vinayagam, R., Sharma, G., Murugesan, G., Pai, S., Gupta, D., & Kumar Narasimhan, M. (2022). Rapid photocatalytic degradation of 2, 4‐dichlorophenoxy acetic acid by ZnO nanoparticles synthesized using the leaf extract of Muntingia calabura. Journal of Molecular Structure, 1263, 133127.
Waqas Alam, M., Aamir, M., Farhan, M., Albuhulayqah, M., Ahmad, M. M., Ravikumar, C. R., Dileep Kumar, V. G., & Ananda Murthy, H. C. (2021). Green synthesis of Ni‐Cu‐Zn based nanosized metal oxides for photocatalytic and sensor applications. Crystals, 11, 1467.
Waqas Alam, M., Al Qahtani, H. S., Aamir, M., Abuzir, A., Khan, M. S., Albuhulayqah, M., Mushtaq, S., Zaidi, N., & Ramya, A. (2020). Phyto synthesis of manganese‐doped zinc nanoparticles using Carica papaya leaves: Structural properties and its evaluation for catalytic, antibacterial and antioxidant activities. Polymers, 14(9), 1827.
Waqas Alam, M., BaQais, A., Mir, T. A., Nahvi, I., Zaidi, N., & Yasin, A. (2023). Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Scientific Reports, 13(1), 1328.
Yu, C., Leng, M., Liu, M., Yu, Y., Liu, D., & Wang, C. (2012). Synthesis of normal and flattened rhombic dodecahedral Ag2S particles. Crystal Engineering Communications, 14, 3772–3777.
معلومات مُعتمدة: Deanship of Scientific Research; 6034 Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia
فهرسة مساهمة: Keywords: Phyllanthus emblica fruit; UV–visible; X‐ray diffraction; antimicrobial activities; morphological pattern; silver sulfide nanoparticles
تواريخ الأحداث: Date Created: 20240516 Latest Revision: 20240516
رمز التحديث: 20240516
DOI: 10.1002/jemt.24612
PMID: 38752356
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24612