دورية أكاديمية

Antibody Isolation in C. neoformans.

التفاصيل البيبلوغرافية
العنوان: Antibody Isolation in C. neoformans.
المؤلفون: Mendoza SR; Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil.; Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil., da Silva Ferreira M; Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil.; Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil., Valente MR; Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil.; Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil., Guimarães AJ; Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil. allanguimaraes@id.uff.br.; Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. allanguimaraes@id.uff.br.; Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Fluminense Federal University, Niterói, RJ, Brazil. allanguimaraes@id.uff.br.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2775, pp. 307-328.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Cryptococcus neoformans*/immunology , Antibodies, Monoclonal*/immunology , Antibodies, Monoclonal*/isolation & purification , Hybridomas*/immunology , Antibodies, Fungal*/immunology , Antibodies, Fungal*/isolation & purification, Animals ; Humans ; Mice ; B-Lymphocytes/immunology ; Cryptococcosis/immunology ; Cryptococcosis/diagnosis ; Antigens, Fungal/immunology ; Immunization
مستخلص: The importance of humoral immunity to fungal infections remains to be elucidated. In cryptococcosis, patients that fail to generate antibodies against antigens of the fungus Cryptococcus neoformans are more susceptible to the disease, demonstrating the importance of these molecules to the antifungal immune response. Historically, antibodies against C. neoformans have been applied in diagnosis, therapeutics, and as important research tools to elucidate fungal biology. Throughout the process of generating monoclonal antibodies (mAbs) from a single B-cell clone and targeting a single epitope, several immunization steps might be required for the detection of responsive antibodies to the antigen of interest in the serum. This complex mixture of antibodies comprises the polyclonal antibodies. To obtain mAbs, B-lymphocytes are harvested (from spleen or peripheral blood) and fused with tumor myeloma cells, to generate hybridomas that are individually cloned and specifically screened for mAb production. In this chapter, we describe all the necessary steps, from the immunization to polyclonal antibody harvesting, hybridoma generation, and mAb production and purification. Additionally, we discuss new cutting-edge approaches for generating interspecies mAbs, such as humanized mAbs, or for similar species in distinct host backgrounds.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Maziarz EK, Perfect JR (2016) Cryptococcosis. Infect Dis Clin N Am 30:179–206. https://doi.org/10.1016/j.idc.2015.10.006. (PMID: 10.1016/j.idc.2015.10.006)
Mansour MK, Reedy JL, Tam JM et al (2014) Macrophage–Cryptococcus interactions: an update. Curr Fungal Infect Rep 8:109–115. https://doi.org/10.1007/s12281-013-0165-7. (PMID: 10.1007/s12281-013-0165-724660045)
Elsegeiny W, Marr KA, Williamson PR (2018) Immunology of cryptococcal infections: developing a rational approach to patient therapy. Front Immunol 9:651. https://doi.org/10.3389/fimmu.2018.00651. (PMID: 10.3389/fimmu.2018.00651296706255893745)
Gibson JF, Johnston SA (2015) Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 78:76–86. https://doi.org/10.1016/j.fgb.2014.11.006. (PMID: 10.1016/j.fgb.2014.11.006254985764503824)
Rohatgi S, Pirofski L (2015) Host immunity to Cryptococcus neoformans. Future Microbiol 10:565–581. https://doi.org/10.2217/fmb.14.132. (PMID: 10.2217/fmb.14.13225865194)
Gao Y, Huang X, Zhu Y et al (2018) A brief review of monoclonal antibody technology and its representative applications in immunoassays. J Immunoass Immunochem 39:351–364. https://doi.org/10.1080/15321819.2018.1515775. (PMID: 10.1080/15321819.2018.1515775)
Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. https://doi.org/10.1038/256495a0. (PMID: 10.1038/256495a01172191)
Scheen AJ (2009) International classification of various types of monoclonal antibodies. Rev Med Liege 64:244–247. (PMID: 19642452)
Buss NA, Henderson SJ, McFarlane M et al (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12:615–622. https://doi.org/10.1016/j.coph.2012.08.001. (PMID: 10.1016/j.coph.2012.08.00122920732)
Morrison SL, Johnson MJ, Herzenberg LA et al (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855. https://doi.org/10.1073/pnas.81.21.6851. (PMID: 10.1073/pnas.81.21.68516436822392030)
Jones PT, Dear PH, Foote J et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525. https://doi.org/10.1038/321522a0. (PMID: 10.1038/321522a03713831)
Feldmesser M (1998) Mechanism of action of antibody to capsular polysaccharide in Cryptococcus neoformans infection. Front Biosci 3:d136–d151. https://doi.org/10.2741/A270. (PMID: 10.2741/A2709445465)
Casadevall A, Pirofski L (2012) Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 11:447–456. https://doi.org/10.1016/j.chom.2012.04.004. (PMID: 10.1016/j.chom.2012.04.004226077983360875)
Maitta RW, Datta K, Chang Q et al (2004) Protective and nonprotective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan manifest different specificities and gene use profiles. Infect Immun 72:4810–4818. https://doi.org/10.1128/IAI.72.8.4810-4818.2004. (PMID: 10.1128/IAI.72.8.4810-4818.200415271943470673)
Rachini A, Pietrella D, Lupo P et al (2007) An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect Immun 75:5085–5094. https://doi.org/10.1128/IAI.00278-07. (PMID: 10.1128/IAI.00278-07176066002168274)
Rosas ÁL, Nosanchuk JD, Casadevall A (2001) Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect Immun 69:3410–3412. https://doi.org/10.1128/IAI.69.5.3410-3412.2001. (PMID: 10.1128/IAI.69.5.3410-3412.20011129276498300)
Rodrigues ML, Travassos LR, Miranda KR et al (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68:7049–7060. https://doi.org/10.1128/IAI.68.12.7049-7060.2000. (PMID: 10.1128/IAI.68.12.7049-7060.20001108383097815)
Figueiredo ABC, Fonseca FL, Kuczera D, Conte F de P, Arissawa M, Rodrigues ML (2021) Monoclonal antibodies against cell wall chitooligomers as accessory tools for the control of Cryptococcosis. Antimicrob Agents Chemother 65:e0118121. https://doi.org/10.1128/AAC.01181-21. (PMID: 10.1128/AAC.01181-2134570650)
Liedke SC, Miranda DZ, Gomes KX, Gonçalves JLS, Frases S, Nosanchuk JD, Rodrigues ML, Nimrichter L, Peralta JM, Guimarães AJ (2017) Characterization of the antifungal functions of a WGA-Fc (IgG2a) fusion protein binding to cell wall chitin oligomers. Sci Rep 7:12187. https://doi.org/10.1038/s41598-017-12540-y. (PMID: 10.1038/s41598-017-12540-y289398935610272)
Cordero RJB, Liedke SC, de S. Araújo GR, Martinez LR, Nimrichter L, Frases S, Peralta JM, Casadevall A, Rodrigues ML, Nosanchuk JD, Guimaraes AJ (2016) Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Sci Rep 6:21765. https://doi.org/10.1038/srep21765. (PMID: 10.1038/srep21765269080774764860)
Casadevall A, Mukherjee J, Devi SJN, Schneerson R, Robbins JB, Scharff MD (1992) Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J Infect Dis 165:1086–1093. https://doi.org/10.1093/infdis/165.6.1086. (PMID: 10.1093/infdis/165.6.10861583327)
De Jesus M, Chow S-K, Cordero RJB, Frases S, Casadevall A (2010) Galactoxylomannans from Cryptococcus neoformans varieties neoformans and grubii are structurally and antigenically variable. Eukaryot Cell 9:1018–1028. https://doi.org/10.1128/EC.00268-09. (PMID: 10.1128/EC.00268-09200614112901672)
Nosanchuk JD, Rosas AL, Lee SC, Casadevall A (2000) Melanisation of Cryptococcus neoformans in human brain tissue. Lancet 355:2049–2050. https://doi.org/10.1016/S0140-6736(00)02356-4. (PMID: 10.1016/S0140-6736(00)02356-410885360)
Rydahl MG, Kračun SK, Fangel JU, Michel G, Guillouzo A, Génicot S, Mravec J, Harholt J, Wilkens C, Motawia MS, Svensson B, Tranquet O, Ralet M-C, Jørgensen B, Domozych DS, Willats WGT (2017) Development of novel monoclonal antibodies against starch and ulvan – implications for antibody production against polysaccharides with limited immunogenicity. Sci Rep 7:9326. https://doi.org/10.1038/s41598-017-04307-2. (PMID: 10.1038/s41598-017-04307-2288391965570955)
Broecker F, Anish C, Seeberger PH (2015) Generation of monoclonal antibodies against defined oligosaccharide antigens. In: Lepenies B (ed) Carbohydrate-based vaccines. Springer, New York, pp 57–80. (PMID: 10.1007/978-1-4939-2874-3_5)
Chow S-K, Casadevall A (2011) Evaluation of Cryptococcus neoformans galactoxylomannan–protein conjugate as vaccine candidate against murine cryptococcosis. Vaccine 29:1891–1898. https://doi.org/10.1016/j.vaccine.2010.12.134. (PMID: 10.1016/j.vaccine.2010.12.134212385683043149)
Feng Y, Han G, Chung T-S, Weber M, Widjojo N, Maletzko C (2017) Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (sPPSU) membranes. J Membr Sci 531:27–35. https://doi.org/10.1016/j.memsci.2017.02.040. (PMID: 10.1016/j.memsci.2017.02.040)
Greenfield EA (2018) Polyethylene glycol fusion for hybridoma production. Cold Spring Harb Protoc 2018:pdb.prot103176. https://doi.org/10.1101/pdb.prot103176. (PMID: 10.1101/pdb.prot103176)
Fuss IJ, Kanof ME, Smith PD, Zola H (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol 85. https://doi.org/10.1002/0471142735.im0701s85.
Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng C, Chai X, He R, Li X, Lv Q, Zhu H, Deng W, Xu Y, Wang Y, Qiao L, Tan Y, Song L, Wang G, Du X, Gao N, Liu J, Xiao J, Su X, Du Z, Feng Y, Qin C, Qin C, Jin R, Xie XS (2020) Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 182:73–84.e16. https://doi.org/10.1016/j.cell.2020.05.025. (PMID: 10.1016/j.cell.2020.05.025324252707231725)
Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124. https://doi.org/10.1016/j.jim.2007.09.017. (PMID: 10.1016/j.jim.2007.09.01717996249)
Goldstein LD, Chen Y-JJ, Wu J, Chaudhuri S, Hsiao Y-C, Schneider K, Hoi KH, Lin Z, Guerrero S, Jaiswal BS, Stinson J, Antony A, Pahuja KB, Seshasayee D, Modrusan Z, Hötzel I, Seshagiri S (2019) Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 2:304. https://doi.org/10.1038/s42003-019-0551-y. (PMID: 10.1038/s42003-019-0551-y314286926689056)
Horns F, Dekker CL, Quake SR (2020) Memory B cell activation, broad anti-influenza antibodies, and bystander activation revealed by single-cell transcriptomics. Cell Rep 30:905–913.e6. https://doi.org/10.1016/j.celrep.2019.12.063. (PMID: 10.1016/j.celrep.2019.12.063319682627891556)
فهرسة مساهمة: Keywords: Antibodies; Capsule; Cryptococcus neoformans; Melanin; Monoclonal antibodiesAntibodies; Polyclonal antibodiesAntibodies
تواريخ الأحداث: Date Created: 20240517 Date Completed: 20240517 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1007/978-1-0716-3722-7_20
PMID: 38758326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3722-7_20