دورية أكاديمية

Uncovering sources, distribution, and seasonal patterns of trace element deposition: the elemental puzzle of the western Himalayas.

التفاصيل البيبلوغرافية
العنوان: Uncovering sources, distribution, and seasonal patterns of trace element deposition: the elemental puzzle of the western Himalayas.
المؤلفون: Dar T; Department of Earth Sciences, Indian Institute of Technology, Roorkee, 247667, India. tdar@es.iitr.ac.in., Rai N; Department of Earth Sciences, Indian Institute of Technology, Roorkee, 247667, India., Jahan A; Department of Earth Sciences, Indian Institute of Technology, Roorkee, 247667, India., Kumar S; Hydrological Investigations Division, National Institute of Hydrology, Roorkee, 247667, India., Bhat MA; State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China., Ahmad R; Department of Geography and Disaster Management, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, 190006, India.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (25), pp. 37196-37214. Date of Electronic Publication: 2024 May 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Trace Elements*/analysis , Seasons* , Environmental Monitoring* , Air Pollutants*/analysis, Snow/chemistry ; India ; Humans ; Himalayas
مستخلص: The transport and deposition of atmospheric pollutants in the Himalayas have a adverse impact on the climate, cryosphere, ecosystem, and monsoon patterns. Unfortunately, there is a insufficiency of data on trace element concentrations and behaviors in the high-altitude Himalayan region, leading to limited research in this area. This study presents a comprehensive and detailed comprehension of trace element deposition, its spatial distribution, seasonal variations, and anthropogenic signals in the high-altitude Kashmir region of the Western Himalayas. Our investigation involved the analysis of 10 trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in glacier ice, snow pits, surface snow, and rainwater collected at various sites including Kolahoi, Thajwas, Pahalgam (Greater Himalayan ranges), and Kongdori and Shopian (Pir Panjal Ranges) during 2021. The study reveals distinct ranges of concentrations for the trace elements at different sampling sites. Our analysis of trace element concentration depth profiles in snow pits reveals seasonal fluctuations during the deposition year. The highest concentrations were found in the autumn (below 20 cm) and summer (top layer), compared to the winter concentration (10-20 cm). The high enrichment factors (EFs) suggest the severity of human-induced trace metal deposition in the western Himalayan region, relative to surrounding regions. Surprisingly, the concentrations and EFs of trace elements showed seasonal contradictions, with lower concentration values and higher EFs during the non-monsoon season and vice versa. A source apportionment analysis using the positive matrix factorization (PMF) technique identified five sources of trace element deposition in the region, including crustal sources (32.33%), coal combustion (15.62%), biomass burning (17.63%), traffic emission (18.8%), and industrial sources (15.6%). Additionally, the study incorporated backward trajectories coupled with δ 18 O using the NOAA HYSPLIT model to estimate moisture sources in the region, which suggests atmospheric pollutants predominately deposited from the large-scale atmospheric circulation from westerlies (75%) during non-monsoon season. These findings underscore the urgent need for enhanced monitoring and research efforts in the future.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017. https://doi.org/10.1016/j.envint.2004.04.004. (PMID: 10.1016/j.envint.2004.04.004)
Al-Momani IF (2003) Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidity and possible sources. Atmos Environ 37(32):4507–4515. https://doi.org/10.1016/S1352-2310(03)00562-4. (PMID: 10.1016/S1352-2310(03)00562-4)
Barbante C, Schwikowski M, Döring T, Gäggeler HW, Schotterer U, Tobler L, Van De Velde K, Ferrari C, Cozzi G, Turetta A, Rosman K, Bolshov M, Capodaglio G, Cescon P, Boutron C (2004) Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/ice cores drilled near Monte Rosa. Environ Sci Technol 38(15):4085–4090. https://doi.org/10.1021/es049759r. (PMID: 10.1021/es049759r)
Bhat MA, Zhong J, Dar T, Kumar A, Li SL (2022a) Spatial distribution of stable isotopes in surface water on the upper Indus River basin (UIRB): Implications for moisture source and paleoelevation reconstruction. Appl Geochem 136:105137. https://doi.org/10.1016/j.apgeochem.2021.105137. (PMID: 10.1016/j.apgeochem.2021.105137)
Bhat MA, Romshoo SA, Beig G (2022b) Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley North-Western Himalaya. Environ Pollut 305:119295. https://doi.org/10.1016/j.envpol.2022.119295. (PMID: 10.1016/j.envpol.2022.119295)
Blok J (2005) Environmental exposure of road borders to zinc. Sci Total Environ 348(1–3):173–190. https://doi.org/10.1016/j.scitotenv.2004.12.073. (PMID: 10.1016/j.scitotenv.2004.12.073)
Bossioli E, Tombrou M, Kalogiros J, Allan J, Bacak A, Bezantakos S, Biskos G, Coe H, Jones BT, Kouvarakis G, Mihalopoulos N, Percival CJ (2016) Atmospheric composition in the Eastern Mediterranean: Influence of biomass burning during summertime using the WRF-Chem model. Atmos Environ 132:317–331. https://doi.org/10.1016/j.atmosenv.2016.03.011. (PMID: 10.1016/j.atmosenv.2016.03.011)
Bonasoni P, Laj P, Marinoni A, Sprenger M, Angelini F, Arduini J, Bonafè U, Calzolari F, Colombo T, Decesari S, Di Biagio C (2010) Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos Chem Phys 10(15):7515–7531. https://doi.org/10.5194/acp-10-7515-2010. (PMID: 10.5194/acp-10-7515-2010)
Brenninkmeijer, C.A.M., Morrison, P.D., 1987. An automated system for isotopic equilibration of CO 2 and H 2 O for 18 O analysis of water. Chem. Geol.: Isotope Geoscience section, 66 (1–2) 21–26.
Burn-Nunes L, Vallelonga P, Lee K, Hong S, Burton G, Hou S, Moy A, Edwards R, Loss R, Rosman K (2014) Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas. Sci Total Environ 487(1):407–419. https://doi.org/10.1016/j.scitotenv.2014.03.120. (PMID: 10.1016/j.scitotenv.2014.03.120)
Celo V, Yassine MM, Dabek-Zlotorzynska E (2021) Insights into elemental composition and sources of fine and coarse particulate matter in dense traffic areas in Toronto and Vancouver Canada. Toxics 9(10):264. https://doi.org/10.3390/toxics9100264. (PMID: 10.3390/toxics9100264)
Chen P, Kang S, Bai J, Sillanpää M, Li C (2015) Yak dung combustion aerosols in the Tibetan Plateau: chemical characteristics and influence on the local atmospheric environment. Atmos Res 156:58–66. https://doi.org/10.1016/j.atmosres.2015.01.001. (PMID: 10.1016/j.atmosres.2015.01.001)
Chen K, Walker RJ, Rudnick RL, Gao S, Gaschnig RM, Puchtel IS et al (2016) Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim Cosmochim Acta 191:1–16. https://doi.org/10.1016/j.gca.2016.07.004. (PMID: 10.1016/j.gca.2016.07.004)
Chueinta W, Hopke PK, Paatero P (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos Environ 34(20):3319–3329. https://doi.org/10.1016/S13522310(99)00433-1. (PMID: 10.1016/S13522310(99)00433-1)
Clements N, Eav J, Xie M, Hannigan MP, Miller SL, Navidi W, Peel JL, Schauer JJ, Shafer MM, Milford JB (2014) Concentrations and source insights for trace elements in fine and coarse particulate matter. Atmos Environ 89:373–381. https://doi.org/10.1016/j.atmosenv.2014.01.011. (PMID: 10.1016/j.atmosenv.2014.01.011)
Clifford HM, Potocki M, Koch I, Sherpa T, Handley M, Korotkikh E, Introne D, Kaspari S, Miner K, Matthews T, Perry B (2021) A case study using 2019 pre-monsoon snow and stream chemistry in the Khumbu region Nepal. Sci Total Environ 789:148006. https://doi.org/10.1016/j.scitotenv.2021.148006. (PMID: 10.1016/j.scitotenv.2021.148006)
Cong Z, Kang S, Zhang Y, Gao S, Wang Z, Liu B, Wan X (2015) New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications. Environ Sci Pollut Res 22(4):2735–2744. https://doi.org/10.1007/s11356-014-3496-1. (PMID: 10.1007/s11356-014-3496-1)
Cong Z, Kang S, Zhang Y, Li X (2010) Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl Geochem 25(9):1415–1421. https://doi.org/10.1016/j.apgeochem.2010.06.011. (PMID: 10.1016/j.apgeochem.2010.06.011)
Craig M (1961) Isotopic variation in meteoric waters. Science 133:1702–1703. https://doi.org/10.1126/science.133.3465.1702. (PMID: 10.1126/science.133.3465.1702)
Dar T, Rai N, Kumar S, Bhat MA (2022a) Climate change impact on cryosphere and streamflow in the Upper Jhelum River Basin (UJRB) of north-western Himalayas. Environ Monit Assess 194(3):140. https://doi.org/10.1007/s10661-022-09766-3. (PMID: 10.1007/s10661-022-09766-3)
Dar T, Rai N, Kumar S (2022b) Distinguishing mountain front and mountain block recharge in an Intermontane Basin of the Himalayan Region. Groundwater 60(4):488–495. https://doi.org/10.1111/gwat.13181. (PMID: 10.1111/gwat.13181)
Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X (2015) Trace element composition of PM2.5 and PM10 from Kolkata–a heavily polluted Indian metropolis. Atmos Pollut Res 6(5):742–750. https://doi.org/10.5094/APR.2015.083. (PMID: 10.5094/APR.2015.083)
Do Hur S, Cunde X, Hong S, Barbante C, Gabrielli P, Lee K, Boutron CF, Ming Y (2007) Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier basin. East Antarctica Atmos Environ 41(38):8567–8578. https://doi.org/10.1016/j.atmosenv.2007.07.012. (PMID: 10.1016/j.atmosenv.2007.07.012)
Dong Z, Kang S, Qin X, Li X, Qin D, Ren J (2015) New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau China. Sci Total Environ 529:101–113. https://doi.org/10.1016/j.scitotenv.2015.05.065. (PMID: 10.1016/j.scitotenv.2015.05.065)
Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus b: Chem Phys Meteorol 63(1):117–128. https://doi.org/10.1111/j.1600-0889.2010.00512.x. (PMID: 10.1111/j.1600-0889.2010.00512.x)
Flegal AR, Gallon C, Ganguli PM, Conaway CH (2013) All the lead in China. Crit Rev Environ Sci Technol 43(17):1869–1944. https://doi.org/10.1080/10643389.2012.671738. (PMID: 10.1080/10643389.2012.671738)
Guo J, Kang S, Huang J, Sillanpää M, Niu H, Sun X, He Y, Wang S, Tripathee L (2017) Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau. Environ Sci (china) 52:18–28. https://doi.org/10.1016/j.jes.2016.03.016. (PMID: 10.1016/j.jes.2016.03.016)
Hakim ZQ, Beig G, Reka S, Romshoo SA, Rashid I (2018) Winter burst of pristine Kashmir Valley Air. Sci Rep 8(1):1–7. https://doi.org/10.1038/s41598-018-20601-z. (PMID: 10.1038/s41598-018-20601-z)
Hong S, Lee K, Hou S, Hur SD, Ren J, Burn LJ, Rosman KJ, Barbante C, Boutron CF (2009) An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt Qomolangma (Everest) Himalayas. Environ Sci Technol 43(21):8060–8065. https://doi.org/10.1021/es901685u. (PMID: 10.1021/es901685u)
Hu GP, Balasubramanian R (2003) Wet deposition of trace metals in Singapore. Water Air Soil Pollut 144(1–4):285–300. https://doi.org/10.1023/A:1022921418383. (PMID: 10.1023/A:1022921418383)
Huang J, Kang S, Zhang Q, Guo J, Chen P, Zhang G, Tripathee L (2013) Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha Region, southern Tibetan plateau. Chemosphere 92(8):871–881. https://doi.org/10.1016/j.chemosphere.2013.02.038. (PMID: 10.1016/j.chemosphere.2013.02.038)
Huma B, Yadav S, Attri AK (2016) Profile of particulate-bound organic compounds in ambient environment of Srinagar: a high-altitude urban location in the North-Western Himalayas. Environ Sci Pollut Res 23(8):7660–7675. https://doi.org/10.1007/s11356-015-5994-1. (PMID: 10.1007/s11356-015-5994-1)
IAEA/GNIP (2014) Precipitation Sampling Guide (V2.02). http://www-naweb.iaea.org/napc/ih/documents/other/gnip&#95;manual&#95;v2.02&#95;en&#95;hq.pdf.
Jain S, Sharma SK, Srivastava MK, Chaterjee A, Singh RK, Saxena M, Mandal TK (2019) Source apportionment of PM 10 over three tropical urban atmospheres at Indo-Gangetic Plain of India: an approach using different receptor models. Arch Environ Contam Toxicol 76(1):114–128. https://doi.org/10.1007/s00244-018-0572-4. (PMID: 10.1007/s00244-018-0572-4)
Jiao X, Dong Z, Kang S, Li Y, Jiang C, Rostami M (2021) New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicol Environ Saf 207:111228. https://doi.org/10.1016/j.ecoenv.2020.111228. (PMID: 10.1016/j.ecoenv.2020.111228)
Kakareka S, Gromov S, Pacyna J, Kukharchyk T (2004) Estimation of heavy metal emission fluxes on the territory of the NIS. Atmos Environ 38(40):7101–7109. https://doi.org/10.1016/j.atmosenv.2004.03.079. (PMID: 10.1016/j.atmosenv.2004.03.079)
Kang S, Mayewski PA, Qin D, Sneed SA, Ren J, Zhang D (2004) Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas. Atmos Environ 38(18):2819–2829. https://doi.org/10.1016/j.atmosenv.2004.02.043. (PMID: 10.1016/j.atmosenv.2004.02.043)
Kang S, Zhang Q, Kaspari S, Qin D, Cong Z, Ren J, Mayewski PA (2007) Spatial and seasonal variations of elemental composition in Mt Everest (Qomolangma) snow/firn. Atmos Environ 41(34):7208–7218. https://doi.org/10.1016/j.atmosenv.2007.05.024. (PMID: 10.1016/j.atmosenv.2007.05.024)
Kang S, Zhang Q, Qian Y, Ji Z, Li C, Cong Z, Zhang Y, Guo J, Du W, Huang J, You Q (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 6(4):796–809. https://doi.org/10.1093/nsr/nwz031. (PMID: 10.1093/nsr/nwz031)
Kaspari S, Mayewski PA, Handley M, Kang S, Hou S, Sneed S, Maasch K, Qin D (2009) A high-resolution record of atmospheric dust composition and variability since AD 1650 from a Mount Everest ice core. J Clim 22(14):3910–3925. https://doi.org/10.1175/2009JCLI2518.1. (PMID: 10.1175/2009JCLI2518.1)
Kim JE, Han YJ, Kim PR, Holsen TM (2012) Factors influencing atmospheric wet deposition of trace elements in rural Korea. Atmos Res 116:185–194. https://doi.org/10.1016/j.atmosres.2012.04.013. (PMID: 10.1016/j.atmosres.2012.04.013)
Kleist DT, Parrish DF, Derber JC, Treadon R, Wu WS, Lord S (2009) Introduction of the GSI into the NCEP global data assimilation system. Weather Forecast 24(6):1691–1705. https://doi.org/10.1175/2009WAF2222201.1. (PMID: 10.1175/2009WAF2222201.1)
Kumar A, Palmate SS, Shukla R (2022) Water quality modelling, monitoring, and mitigation. Appl Sci 12(22):1–7. https://doi.org/10.3390/app122211403. (PMID: 10.3390/app122211403)
Kumar A, Mishra S, Bakshi S, Upadhyay P, Thakur TK (2023a) Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: a critical analysis. Ecohydrology 16(1):1–10. https://doi.org/10.1002/eco.2483. (PMID: 10.1002/eco.2483)
Kumar A, Song HW, Mishra S, Zhang W, Zhang YL, Zhang QR, Yu ZG (2023b) Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: a critical review. Chemosphere 318:137894. (PMID: 10.1016/j.chemosphere.2023.137894)
Lee K, Hur S. Do, Hou S, Hong S, Qin X, Ren J, Liu Y, Rosman KJR, Barbante C, Boutron CF (2008) Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci Total Environ 404(1):171–181. https://doi.org/10.1016/j.scitotenv.2008.06.022. (PMID: 10.1016/j.scitotenv.2008.06.022)
Li C, Kang S, Zhang Q (2009) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157(8–9):2261–2265. https://doi.org/10.1016/j.envpol.2009.03.035. (PMID: 10.1016/j.envpol.2009.03.035)
Li C, Kang S, Yan F (2018) Importance of local black carbon emissions to the fate of glaciers of the third Pole. Environ Sci Technol 52(24):14027–14028. https://doi.org/10.1021/acs.est.8b06285. (PMID: 10.1021/acs.est.8b06285)
Li P, Tian R, Liu R (2019) Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite mine, Guizhou Province China. Expo Health 11(2):81–94. https://doi.org/10.1007/s12403-018-0277-y. (PMID: 10.1007/s12403-018-0277-y)
Liu B, Kang S, Sun J, Zhang Y, Xu R, Wang Y, Liu Y, Cong Z (2013) Wet precipitation chemistry at a high-altitude site (3,326 m a.s.l.) in the southeastern Tibetan Plateau. Environ Sci Pollut Res 20(7):5013–5027. https://doi.org/10.1007/s11356-012-1379-x. (PMID: 10.1007/s11356-012-1379-x)
Liu Y, Hou S, Hong S, Hur SD, Lee K, Wang Y (2011) Atmospheric pollution indicated by trace elements in snow from the northern slope of Cho Oyu range Himalayas. Environ Earth Sci 63(2):311–320. https://doi.org/10.1007/s12665-010-0714-0. (PMID: 10.1007/s12665-010-0714-0)
Lone AM, Achyuthan H, Chakraborty S, Metya A, Datye A, Kripalani RH, Fousiya AA (2020) Controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North-Western India. J Hydrol 588:125106. https://doi.org/10.1016/j.jhydrol.2020.125106. (PMID: 10.1016/j.jhydrol.2020.125106)
Manousakas M, Papaefthymiou H, Diapouli E, Migliori A, Karydas AG, Bogdanovic-Radovic I, Eleftheriadis K (2017) Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci Total Environ 574:155–164. https://doi.org/10.1016/j.scitotenv.2016.09.047. (PMID: 10.1016/j.scitotenv.2016.09.047)
Michelsen N, van Geldern R, Roßmann Y, Bauer I, Schulz S, Barth JAC, Schüth C (2018) Comparison of precipitation collectors used in isotope hydrology. Chem Geol 488:171–179. https://doi.org/10.1016/j.chemgeo.2018.04.032. (PMID: 10.1016/j.chemgeo.2018.04.032)
Ningombam SS, Bagare SP, Sinha N, Singh RB, Srivastava AK, Larson E, Kanawade VP (2014) Characterization of aerosol optical properties over the high-altitude station Hanle, in the trans-Himalayan region. Atmos Res 138:308–323. https://doi.org/10.1016/j.atmosres.2013.11.025. (PMID: 10.1016/j.atmosres.2013.11.025)
Nriagu JO (1996) A history of global metal pollution. Science 272(5259):223–223. https://doi.org/10.1126/science.272.5259.223. (PMID: 10.1126/science.272.5259.223)
Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126. https://doi.org/10.1002/env.3170050203. (PMID: 10.1002/env.3170050203)
Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298. https://doi.org/10.1139/a01-012. (PMID: 10.1139/a01-012)
Pizarro J, Vergara PM, Cerda S, Cordero RR, Castillo X, Rowe PM, Casassa G, Carrasco J, Damiani A, Llanillo PJ, Lambert F, Rondanelli R, Huneeus N, Fernandoy F, Alfonso J, Neshyba S (2021) Contaminant emissions as indicators of chemical elements in the snow along a latitudinal gradient in southern Andes. Sci Rep 11(1):1–10. https://doi.org/10.1038/s41598-021-93895-1. (PMID: 10.1038/s41598-021-93895-1)
Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102(15):5326–5333. https://doi.org/10.1073/pnas.0500656102. (PMID: 10.1073/pnas.0500656102)
Ramanathan V, 2007. Global dimming by air pollution and global warming by greenhouse gases: global and regional perspectives. In Nucleation and atmospheric aerosols (pp. 473–483). Springer, Dordrecht https://doi.org/10.1007/978-1-4020-6475-3&#95;94.
Rawat B, Zhang Q, Sharma CM, Tripathee L, Pandey A, Kandel K, Sun X, Li M, Li S, Kang S (2021) Glacial record of trace metal pollution over the Central Himalayas and its surroundings: distribution, variation, and anthropogenic signals. Atmos Res 251:105428. https://doi.org/10.1016/j.atmosres.2020.105428. (PMID: 10.1016/j.atmosres.2020.105428)
Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337(1–3):91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011. (PMID: 10.1016/j.scitotenv.2004.06.011)
Saranya P, Krishnakumar A, Sinha N, Kumar S, Anoop Krishnan K (2021) Isotopic signatures of moisture recycling and evaporation processes along the Western Ghats orography. Atmos Res 264:105863. https://doi.org/10.1016/j.atmosres.2021.105863. (PMID: 10.1016/j.atmosres.2021.105863)
Sarkar S, Singh RP, Chauhan A (2018) Crop residue burning in Northern India: increasing threat to greater India. J Geophys Res Atmos 123(13):6920–6934. https://doi.org/10.1029/2018JD028428. (PMID: 10.1029/2018JD028428)
Scerri MM, Genga A, Iacobellis S, Delmaire G, Giove A, Siciliano M, Siciliano T, Weinbruch S (2019) Investigating the plausibility of a PMF source apportionment solution derived using a small dataset: a case study from a receptor in a rural site in Apulia-South East Italy. Chemosphere 236:124376. https://doi.org/10.1016/j.chemosphere.2019.124376. (PMID: 10.1016/j.chemosphere.2019.124376)
Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, & Wernli H 2008. Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. J Geophys Res Atmos 113(12) https://doi.org/10.1029/2007JD009416.
Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull Amer Meteor 96(12):2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1. (PMID: 10.1175/BAMS-D-14-00110.1)
Sundriyal S, Shukla T, Tripathee L, Dobhal DP (2020) Natural versus anthropogenic influence on trace elemental concentration in precipitation at Dokriani Glacier, central Himalaya India. Environ Sci Pollut Res 27(3):3462–3472. https://doi.org/10.1007/s11356-019-07102-w. (PMID: 10.1007/s11356-019-07102-w)
Suzuki K, Yabuki T, Ono Y (2009) Roadside Rhododendron pulchrum leaves as bioindicators of heavy metal pollution in traffic areas of Okayama Japan. Environ Monit Assess 149(1–4):133–141. https://doi.org/10.1007/s10661-008-0188-7. (PMID: 10.1007/s10661-008-0188-7)
Tang Q, Sheng W, Li L, Zheng L, Miao C, Sun R (2018) Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui China. Environ Pollut 239:768–776. https://doi.org/10.1016/j.envpol.2018.04.115. (PMID: 10.1016/j.envpol.2018.04.115)
Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265. https://doi.org/10.1029/95RG00262. (PMID: 10.1029/95RG00262)
Tripathee L, Kang S, Huang J, Sharma CM, Sillanpää M, Guo J, Paudyal R (2014) Concentrations of trace elements in wet deposition over the central Himalayas Nepal. Atmos Environ 95:231–238. https://doi.org/10.1016/j.atmosenv.2014.06.043. (PMID: 10.1016/j.atmosenv.2014.06.043)
Tripathee L, Guo J, Kang S, Paudyal R, Sharma CM, Huang J, Chen P, Sharma Ghimire P, Sigdel M, Sillanpää M (2020) Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: the semi-arid mountain valley of the Central Himalaya. Atmos Res 234:104691. https://doi.org/10.1016/j.atmosres.2019.104691. (PMID: 10.1016/j.atmosres.2019.104691)
Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42(9):2240–2253. https://doi.org/10.1016/j.atmosenv.2007.11.039. (PMID: 10.1016/j.atmosenv.2007.11.039)
Vinnarasi F, Srinivasamoorthy K, Saravanan K, Rajesh Kanna A, Gopinath S, Prakash R, Ponnumani G, Babu C (2022) Hydrogeochemical characteristics and risk evaluation of potential toxic elements in groundwater from Shanmughanadhi, Tamilnadu India. Environ Res 204:112199. https://doi.org/10.1016/j.envres.2021.112199. (PMID: 10.1016/j.envres.2021.112199)
Wei T, Dong Z, Kang S, Zong C, Rostami M, Shao Y (2019) Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau. Sci Total Environ 689:754–764. https://doi.org/10.1016/j.scitotenv.2019.06.455. (PMID: 10.1016/j.scitotenv.2019.06.455)
Woszczyk M, Spychalski W, Boluspaeva L (2018) Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—implications for the assessment of environmental quality. Environ Monit Assess 190(6):1–16. https://doi.org/10.1007/s10661-018-6733-0. (PMID: 10.1007/s10661-018-6733-0)
Yamasoe MA, Artaxo P, Miguel AH, Allen AG (2000) Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos Environ 34(10):1641–1653. https://doi.org/10.1016/S1352-2310(99)00329-5. (PMID: 10.1016/S1352-2310(99)00329-5)
Yeo B, Langley-Turnbaugh S (2010) Trace element deposition on Mount Everest. Soil Horizons 51(3):72. https://doi.org/10.2136/sh2010.3.0072. (PMID: 10.2136/sh2010.3.0072)
Zhang QG, Kang SC, Cong ZY, Hou SG, Liu YQ (2008) Elemental composition in surface snow from the ultra-high elevation area of Mt Qomolangma (Everest). Chin Sci Bull 53(2):289–294. https://doi.org/10.1007/s11434-007-0446-z. (PMID: 10.1007/s11434-007-0446-z)
Zhang Q, Kang S, Kaspari S, Li C, Qin D, Mayewski PA, Hou S (2009) Rare earth elements in an ice core from Mt. Everest: seasonal variations and potential sources. Atmos Res 94(2):300–312. https://doi.org/10.1016/j.atmosres.2009.06.005. (PMID: 10.1016/j.atmosres.2009.06.005)
فهرسة مساهمة: Keywords: Seasonal variability; Snow and glacier; Source apportionment; Trace elements; Western Himalayas; Wet deposition fluxes
المشرفين على المادة: 0 (Trace Elements)
0 (Air Pollutants)
تواريخ الأحداث: Date Created: 20240519 Date Completed: 20240619 Latest Revision: 20240619
رمز التحديث: 20240619
DOI: 10.1007/s11356-024-33601-6
PMID: 38764085
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33601-6