Editorial & Opinion

Dystonia and mitochondrial disease: the movement disorder connection revisited in 900 genetically diagnosed patients.

التفاصيل البيبلوغرافية
العنوان: Dystonia and mitochondrial disease: the movement disorder connection revisited in 900 genetically diagnosed patients.
المؤلفون: Indelicato E; Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany.; Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.; Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria., Schlieben LD; Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany.; Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany., Stenton SL; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA., Boesch S; Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria., Skorvanek M; Department of Neurology, P. J. Safarik University, Kosice, Slovakia.; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovakia., Necpal J; 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.; Department of Neurology, Zvolen Hospital, Zvolen, Slovakia., Jech R; Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Kateřinská 30, 121 08, Prague, Czech Republic., Winkelmann J; Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany.; Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany., Prokisch H; Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany.; Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany., Zech M; Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany. michael.zech@mri.tum.de.; Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. michael.zech@mri.tum.de.; Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany. michael.zech@mri.tum.de.
المصدر: Journal of neurology [J Neurol] 2024 Jul; Vol. 271 (7), pp. 4685-4692. Date of Electronic Publication: 2024 May 22.
نوع المنشور: Letter
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0423161 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1459 (Electronic) Linking ISSN: 03405354 NLM ISO Abbreviation: J Neurol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York, Springer-Verlag
مواضيع طبية MeSH: Mitochondrial Diseases*/genetics , Mitochondrial Diseases*/diagnosis , Dystonia*/genetics , Dystonia*/diagnosis, Humans ; Male ; Female ; Adult ; Movement Disorders/genetics ; Movement Disorders/diagnosis ; Movement Disorders/physiopathology ; Middle Aged ; Mutation ; Adolescent
References: Albanese A, Bhatia K, Bressman SB et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28:863–873. https://doi.org/10.1002/MDS.25475. (PMID: 10.1002/MDS.25475236497203729880)
Dzinovic I, Boesch S, Škorvánek M et al (2022) Genetic overlap between dystonia and other neurologic disorders: a study of 1,100 exomes. Park Relat Disord 102:1–6. https://doi.org/10.1016/j.parkreldis.2022.07.003. (PMID: 10.1016/j.parkreldis.2022.07.003)
Jinnah HA, Sun YV (2019) Dystonia genes and their biological pathways. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2019.05.014. (PMID: 10.1016/j.nbd.2019.05.014311290866863078)
Zech M, Jech R, Boesch S et al (2020) Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol 19:908–918. https://doi.org/10.1016/S1474-4422(20)30312-4. (PMID: 10.1016/S1474-4422(20)30312-4330988018246240)
Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson’s disease. Lancet Neurol 19:170–178. https://doi.org/10.1016/S1474-4422(19)30287-X. (PMID: 10.1016/S1474-4422(19)30287-X31521533)
Wallace DC, Murdock DG (1999) Mitochondria and dystonia: the movement disorder connection? Proc Natl Acad Sci U S A 96:1817–1819. https://doi.org/10.1073/PNAS.96.5.1817/ASSET/09D559F9-E759-4744-9C3C-C0F2116441A0/ASSETS/GRAPHIC/PQ0690296002.JPEG. (PMID: 10.1073/PNAS.96.5.1817/ASSET/09D559F9-E759-4744-9C3C-C0F2116441A0/ASSETS/GRAPHIC/PQ0690296002.JPEG1005155033525)
Schlieben LD, Prokisch H (2020) The dimensions of primary mitochondrial disorders. Front Cell Dev Biol 8:600079. https://doi.org/10.3389/FCELL.2020.600079/BIBTEX. (PMID: 10.3389/FCELL.2020.600079/BIBTEX333246497726223)
Schreglmann SR, Riederer F, Galovic M et al (2018) Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord 33:146–155. https://doi.org/10.1002/MDS.27174. (PMID: 10.1002/MDS.2717428901595)
Ticci C, Orsucci D, Ardissone A et al (2021) Movement disorders in children with a mitochondrial disease: a cross-sectional survey from the nationwide Italian collaborative network of mitochondrial diseases. J Clin Med 10:2063. https://doi.org/10.3390/JCM10102063. (PMID: 10.3390/JCM10102063340658038151313)
Montano V, Orsucci D, Carelli V et al (2022) Adult-onset mitochondrial movement disorders: a national picture from the Italian Network. J Neurol 269:1413–1421. https://doi.org/10.1007/S00415-021-10697-1/FIGURES/2. (PMID: 10.1007/S00415-021-10697-1/FIGURES/234259909)
Martikainen MH, Ng YS, Gorman GS et al (2016) Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol 73:668–674. https://doi.org/10.1001/JAMANEUROL.2016.0355. (PMID: 10.1001/JAMANEUROL.2016.035527111573)
Schapira AHV, Warner T, Gash MT et al (1997) Complex I function in familial and sporadic dystonia. Ann Neurol 41:556–559. https://doi.org/10.1002/ANA.410410421. (PMID: 10.1002/ANA.4104104219124815)
Benecke R, Strümper P, Weiss H (1992) Electron transfer complex I defect in idiopathic dystonia. Ann Neurol 32:683–686. https://doi.org/10.1002/ANA.410320512. (PMID: 10.1002/ANA.4103205121449249)
Indelicato E, Boesch S, Mencacci NE et al (2024) Dystonia in ATP synthase defects: reconnecting mitochondria and dopamine. Mov Disord 39:29–35. https://doi.org/10.1002/MDS.29657. (PMID: 10.1002/MDS.2965737964479)
Stenton SL, Shimura M, Piekutowska-Abramczuk D, et al (2021) Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv 2021.06.21.21259171. https://doi.org/10.1101/2021.06.21.21259171.
Zech M, Kopajtich R, Steinbrücker K et al (2022) Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol 91:225–237. https://doi.org/10.1002/ANA.26293. (PMID: 10.1002/ANA.26293349548179939050)
Morava E, Van Den Heuvel L, Hol F et al (2006) Mitochondrial disease criteria: diagnostic applications in children. Neurology 67:1823–1826. https://doi.org/10.1212/01.WNL.0000244435.27645.54/SUPPL_FILE/MORAVA_67-1823.PDF. (PMID: 10.1212/01.WNL.0000244435.27645.54/SUPPL_FILE/MORAVA_67-1823.PDF17130416)
Van Gassen KLI, Van Der Heijden CDCC, De Bot ST et al (2012) Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain 135:2994–3004. https://doi.org/10.1093/BRAIN/AWS224. (PMID: 10.1093/BRAIN/AWS22422964162)
Ortega-Suero G, Fernández-Matarrubia M, López-Valdés E, Arpa J (2019) A novel missense OPA1 mutation in a patient with dominant optic atrophy and cervical dystonia. Mov Disord Clin Pract 6:171. https://doi.org/10.1002/MDC3.12699. (PMID: 10.1002/MDC3.1269930838318)
Keller N, Paketci C, Edem P et al (2021) De novo DNM1L variant presenting with severe muscular atrophy, dystonia and sensory neuropathy. Eur J Med Genet. https://doi.org/10.1016/J.EJMG.2020.104134. (PMID: 10.1016/J.EJMG.2020.10413433387674)
Finsterer J, Mehri S (2023) Progressive mitochondrial encephalopathy due to the novel compound heterozygous variants c.182C>T and c.446A>AG in NARS2: a case report. Cureus. https://doi.org/10.7759/cureus.43969. (PMID: 10.7759/cureus.439693822216610784865)
Koens LH, Klamer MR, Sival DA et al (2023) A screening tool to quickly identify movement disorders in patients with inborn errors of metabolism. Mov Disord. https://doi.org/10.1002/mds.29332. (PMID: 10.1002/mds.2933236727539)
Amprosi M, Zech M, Steiger R et al (2021) Familial writer’s cramp: a clinical clue for inherited coenzyme Q10 deficiency. Neurogenetics 22:81–86. https://doi.org/10.1007/s10048-020-00624-3. (PMID: 10.1007/s10048-020-00624-332830305)
Nasca A, Mencacci NE, Invernizzi F et al (2023) Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain 146:2730–2738. https://doi.org/10.1093/BRAIN/AWAD068. (PMID: 10.1093/BRAIN/AWAD0683686016610316767)
Hayflick SJ, Kurian MA, Hogarth P (2018) Neurodegeneration with brain iron accumulation. Handb Clin Neurol 147:293. https://doi.org/10.1016/B978-0-444-63233-3.00019-1. (PMID: 10.1016/B978-0-444-63233-3.00019-1293256188235601)
Sturchio A, Marsili L, Mahajan A et al (2020) How have advances in genetic technology modified movement disorder nosology? Eur J Neurol 27:1461–1470. https://doi.org/10.1111/ENE.14294. (PMID: 10.1111/ENE.1429432356310)
Lumsden DE, Cif L, Capuano A, Allen NM (2023) The changing face of reported status dystonicus—a systematic review. Park Relat Disord. https://doi.org/10.1016/j.parkreldis.2023.105438. (PMID: 10.1016/j.parkreldis.2023.105438)
Saini AG, Hassan I, Sharma K et al (2022) Status dystonicus in children: a cross-sectional study and review of literature. J Child Neurol 37:441–450. https://doi.org/10.1177/08830738221081593. (PMID: 10.1177/0883073822108159335253510)
Rauschenberger L, Knorr S, Pisani A et al (2021) Second hit hypothesis in dystonia: dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 159:105511. https://doi.org/10.1016/J.NBD.2021.105511. (PMID: 10.1016/J.NBD.2021.10551134537328)
Lima T, Li Y, Mottis A, Auwerx J (2022) Pleiotropic effects of mitochondria in aging. Nat Aging. https://doi.org/10.1038/s43587-022-00191-2. (PMID: 10.1038/s43587-022-00191-237118378)
Jia F, Fellner A, Kumar KR (2022) Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). https://doi.org/10.3390/GENES13030471. (PMID: 10.3390/GENES13030471366728509777934)
Di Bella D, Lazzaro F, Brusco A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. https://doi.org/10.1038/ng.544. (PMID: 10.1038/ng.54420208537)
Dodson M, De La Vega MR, Cholanians AB et al (2019) Modulating NRF2 in disease: timing is everything. Annu Rev Pharmacol Toxicol 59:555–575. https://doi.org/10.1146/ANNUREV-PHARMTOX-010818-021856/CITE/REFWORKS. (PMID: 10.1146/ANNUREV-PHARMTOX-010818-021856/CITE/REFWORKS30256716)
Pilotto F, Chellapandi DM, Puccio H (2024) Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med 30:117–125. https://doi.org/10.1016/j.molmed.2023.12.002. (PMID: 10.1016/j.molmed.2023.12.00238272714)
Boesch S, Indelicato E (2024) Approval of omaveloxolone for Friedreich ataxia. Nat Rev Neurol 2024:1–2. https://doi.org/10.1038/s41582-024-00957-9. (PMID: 10.1038/s41582-024-00957-9)
تواريخ الأحداث: Date Created: 20240522 Date Completed: 20240709 Latest Revision: 20240728
رمز التحديث: 20240728
مُعرف محوري في PubMed: PMC11233361
DOI: 10.1007/s00415-024-12447-5
PMID: 38775934
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1459
DOI:10.1007/s00415-024-12447-5