دورية أكاديمية

Bitter taste TAS2R14 activation by intracellular tastants and cholesterol.

التفاصيل البيبلوغرافية
العنوان: Bitter taste TAS2R14 activation by intracellular tastants and cholesterol.
المؤلفون: Hu X; iHuman Institute, ShanghaiTech University, Shanghai, China.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China., Ao W; iHuman Institute, ShanghaiTech University, Shanghai, China.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China., Gao M; NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China., Wu L; iHuman Institute, ShanghaiTech University, Shanghai, China., Pei Y; iHuman Institute, ShanghaiTech University, Shanghai, China., Liu S; iHuman Institute, ShanghaiTech University, Shanghai, China.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China., Wu Y; iHuman Institute, ShanghaiTech University, Shanghai, China., Zhao F; iHuman Institute, ShanghaiTech University, Shanghai, China., Sun Q; iHuman Institute, ShanghaiTech University, Shanghai, China., Liu J; iHuman Institute, ShanghaiTech University, Shanghai, China., Jiang L; iHuman Institute, ShanghaiTech University, Shanghai, China.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China., Wang X; iHuman Institute, ShanghaiTech University, Shanghai, China.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China., Li Y; Department of Oral Surgery, Shanghai Ninth People's Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.; National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China., Tan Q; iHuman Institute, ShanghaiTech University, Shanghai, China., Cheng J; NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China., Yang F; NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China., Yang C; Department of Oral Surgery, Shanghai Ninth People's Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. yangchi63@hotmail.com.; National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China. yangchi63@hotmail.com., Sun J; NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China. sunjinpengsdu@126.com., Hua T; iHuman Institute, ShanghaiTech University, Shanghai, China. huatian@shanghaitech.edu.cn.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China. huatian@shanghaitech.edu.cn., Liu ZJ; iHuman Institute, ShanghaiTech University, Shanghai, China. liuzhj@shanghaitech.edu.cn.; School of Life Science and Technology, ShanghaiTech University, Shanghai, China. liuzhj@shanghaitech.edu.cn.
المصدر: Nature [Nature] 2024 Jul; Vol. 631 (8020), pp. 459-466. Date of Electronic Publication: 2024 May 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Aristolochic Acids*/metabolism , Aristolochic Acids*/chemistry , Aristolochic Acids*/pharmacology , Cholesterol*/chemistry , Cholesterol*/metabolism , Cholesterol*/pharmacology , Flufenamic Acid*/chemistry , Flufenamic Acid*/metabolism , Flufenamic Acid*/pharmacology , Receptors, G-Protein-Coupled*/agonists , Receptors, G-Protein-Coupled*/genetics , Receptors, G-Protein-Coupled*/metabolism , Receptors, G-Protein-Coupled*/ultrastructure , Taste*/drug effects , Taste*/physiology, Humans ; Binding Sites/drug effects ; Cryoelectron Microscopy ; GTP-Binding Protein alpha Subunits, Gi-Go/chemistry ; GTP-Binding Protein alpha Subunits, Gi-Go/metabolism ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Transducin/chemistry ; Transducin/metabolism
مستخلص: Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents 1,2 . TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications 3 . Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and G i1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Dagan-Wiener, A. et al. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res. 47, D1179–D1185 (2019). (PMID: 3035738410.1093/nar/gky974)
Bayer, S. et al. Chemoinformatics view on bitter taste receptor agonists in food. J. Agric. Food Chem. 69, 13916–13924 (2021). (PMID: 34762411863078910.1021/acs.jafc.1c05057)
Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16, 1299–1304 (2010). (PMID: 20972434306656710.1038/nm.2237)
Kooistra, A. J. et al. GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res. 49, D335–D343 (2021). (PMID: 3327089810.1093/nar/gkaa1080)
Lundstrom, J. N., Boesveldt, S. & Albrecht, J. Central processing of the chemical senses: an overview. ACS Chem. Neurosci. 2, 5–16 (2011). (PMID: 2150326810.1021/cn1000843)
Chandrashekar, J., Hoon, M. A., Ryba, N. J. & Zuker, C. S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006). (PMID: 1710895210.1038/nature05401)
Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001). (PMID: 1150918610.1016/S0092-8674(01)00451-2)
Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003). (PMID: 1463655410.1016/S0092-8674(03)00844-4)
Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000). (PMID: 1076193410.1016/S0092-8674(00)80705-9)
Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000). (PMID: 1076193510.1016/S0092-8674(00)80706-0)
Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000). (PMID: 1076624210.1038/35007072)
Lee, S. J., Depoortere, I. & Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug Discov. 18, 116–138 (2019). (PMID: 3050479210.1038/s41573-018-0002-3)
Bloxham, C. J., Foster, S. R. & Thomas, W. G. A bitter taste in your heart. Front. Physiol. 11, 431 (2020). (PMID: 32457649722536010.3389/fphys.2020.00431)
Kim, D., Pauer, S. H., Yong, H. M., An, S. S. & Liggett, S. B. β 2 -Adrenergic receptors chaperone trapped bitter taste receptor 14 to the cell surface as a heterodimer and exert unidirectional desensitization of taste receptor function. J. Biol. Chem. 291, 17616–17628 (2016). (PMID: 27342779501615810.1074/jbc.M116.722736)
Nayak, A. P., Shah, S. D., Michael, J. V. & Deshpande, D. A. Bitter taste receptors for asthma therapeutics. Front. Physiol. 10, 884 (2019). (PMID: 31379597664787310.3389/fphys.2019.00884)
Woo, J. A. et al. A Par3/LIM kinase/cofilin pathway mediates human airway smooth muscle relaxation by TAS2R14. Am. J. Respir. Cell Mol. Biol. 68, 417–429 (2023). (PMID: 366625761011242910.1165/rcmb.2022-0303OC)
Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996). (PMID: 865728410.1038/381796a0)
Ming, D., Ruiz-Avila, L. & Margolskee, R. F. Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc. Natl Acad. Sci. USA 95, 8933–8938 (1998). (PMID: 96717822118010.1073/pnas.95.15.8933)
Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2, 1055–1062 (1999). (PMID: 1057048110.1038/15981)
Zhang, Y. et al. Coding of sweet, bitter and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003). (PMID: 1258152010.1016/S0092-8674(03)00071-0)
Clapp, T. R. et al. Tonic activity of Gα–gustducin regulates taste cell responsivity. FEBS Lett. 582, 3783–3787 (2008). (PMID: 18930056265964710.1016/j.febslet.2008.10.007)
Kim, D., Woo, J. A., Geffken, E., An, S. S. & Liggett, S. B. Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via G αi1,2,3 . Am. J. Respir. Cell Mol. Biol. 56, 762–771 (2017). (PMID: 28145731551629510.1165/rcmb.2016-0373OC)
Waterloo, L. et al. Discovery of 2-aminopyrimidines as potent agonists for the bitter taste receptor TAS2R14. J. Med. Chem. 66, 3499–3521 (2023). (PMID: 3684764610.1021/acs.jmedchem.2c01997)
Levit, A. et al. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J. 28, 1181–1197 (2014). (PMID: 2428509110.1096/fj.13-242594)
Fierro, F. et al. Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligands. Cell. Mol. Life Sci. 80, 114 (2023). (PMID: 370124101107210410.1007/s00018-023-04765-0)
Sainz, E. et al. Functional characterization of human bitter taste receptors. Biochem. J. 403, 537–543 (2007). (PMID: 17253962187638310.1042/BJ20061744)
Wooding, S. P. et al. Association of a bitter taste receptor mutation with Balkan endemic nephropathy (BEN). BMC Med. Genet. 13, 96 (2012). (PMID: 23050764349505410.1186/1471-2350-13-96)
Winder, C. V., Wax, J., Serrano, B., Jones, E. M. & Mc, P. M. Anti-inflammatory and antipyretic properties of N-(α,α,α-trifluoro-m-tolyl) anthranilic acid (CI-440; flufenamic acid). Arthritis Rheum. 6, 36–47 (1963). (PMID: 1400113310.1002/art.1780060105)
Shaik, F. A., Medapati, M. R. & Chelikani, P. Cholesterol modulates the signaling of chemosensory bitter taste receptor T2R14 in human airway cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L45–L57 (2019). (PMID: 3035843510.1152/ajplung.00169.2018)
Xu, W. et al. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 377, 1298–1304 (2022). (PMID: 3610800510.1126/science.abo1633)
Nowak, S. et al. Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim. Biophys. Acta Gen. Subj. 1862, 2162–2173 (2018). (PMID: 3000987610.1016/j.bbagen.2018.07.009)
Topin, J. et al. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell. Mol. Life Sci. 78, 7605–7615 (2021). (PMID: 346873181107330810.1007/s00018-021-03968-7)
Di Pizio, A. et al. Comparing class A GPCRs to bitter taste receptors: structural motifs, ligand interactions and agonist-to-antagonist ratios. Methods Cell. Biol. 132, 401–427 (2016). (PMID: 2692855310.1016/bs.mcb.2015.10.005)
Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 A structure of the human β 2 -adrenergic receptor. Structure 16, 897–905 (2008). (PMID: 18547522260155210.1016/j.str.2008.05.001)
Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469–473 (2021). (PMID: 3376273110.1038/s41586-021-03376-8)
Qi, X. et al. Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric G i . Nature 571, 279–283 (2019). (PMID: 31168089677700110.1038/s41586-019-1286-0)
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016). (PMID: 2656937010.1021/acschembio.5b00753)
Duan, J. et al. Cryo-EM structure of an activated V1P1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat. Commun. 11, 4121 (2020).
Liu, P. et al. The structural basis of the dominant negative phenotype of the Gαβγ G203A/A326S heterotrimer. Acta Pharmacol. Sin. 37, 1259–1272 (2016). (PMID: 27498775502210310.1038/aps.2016.69)
Ammon, C., Schäfer, J., Kreuzer, O. J. & Meyerhof, W. Presence of a plasma membrane targeting sequence in the amino-terminal region of the rat somatostatin receptor 3. Arch. Physiol. Biochem. 110, 137–145 (2002). (PMID: 1193541110.1076/apab.110.1.137.908)
Ueda, T. et al. Functional interaction between T2R taste receptors and G-protein α subunits expressed in taste receptor cells. J. Neurosci. 23, 7376–7380 (2003). (PMID: 12917372674044310.1523/JNEUROSCI.23-19-07376.2003)
Rasmussen, S. G. et al. Crystal structure of the β 2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011). (PMID: 21772288318418810.1038/nature10361)
Hua, T. et al. Activation and signaling mechanism revealed by cannabinoid receptor–G i complex structures. Cell 180, 655–665 (2020). (PMID: 32004463789835310.1016/j.cell.2020.01.008)
Mastronarde, D. N. SerialEM. J. Struct. Biol. 152, 36–51 (2005). (PMID: 1618256310.1016/j.jsb.2005.07.007)
Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019). (PMID: 3156292110.1016/j.jsb.2019.09.013)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019). (PMID: 31591578685854510.1038/s41592-019-0575-8)
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). (PMID: 1557276510.1107/S0907444904019158)
Adams, P. D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004). (PMID: 1464613310.1107/S0909049503024130)
Guo, L. et al. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature 618, 193–200 (2023). (PMID: 3722598610.1038/s41586-023-06106-4)
Cheng, J. et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab. 34, 240–255 e210 (2022). (PMID: 3510851210.1016/j.cmet.2021.12.022)
Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020). (PMID: 32367019764851710.1038/s41589-020-0535-8)
Pydi, S. P. et al. Cholesterol modulates bitter taste receptor function. Biochim. Biophys. Acta 1858, 2081–2087 (2016). (PMID: 2728889210.1016/j.bbamem.2016.06.005)
Cardaba, C. M. & Mueller, A. Distinct modes of molecular regulation of CCL3 induced calcium flux in monocytic cells. Biochem. Pharmacol. 78, 974–982 (2009). (PMID: 1952345610.1016/j.bcp.2009.06.003)
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013). (PMID: 2357961410.1007/s10822-013-9644-8)
Protein Preparation Wizard 2023-3 (Schrödinger, 2023).
LigPrep 2023-3 (Schrödinger, 2023).
Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004). (PMID: 1502786510.1021/jm0306430)
Glide 2023-3 (Schrödinger, 2023).
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006). (PMID: 1645855210.1016/j.jmgm.2005.12.005)
Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021). (PMID: 3409671810.1021/acs.jctc.1c00302)
Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proc. 2006 ACM/IEEE Conference on Supercomputing 43 (Association for Computing Machinery, 2006).
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). (PMID: 874457010.1016/0263-7855(96)00018-5)
المشرفين على المادة: 94218WFP5T (aristolochic acid I)
0 (Aristolochic Acids)
97C5T2UQ7J (Cholesterol)
60GCX7Y6BH (Flufenamic Acid)
EC 3.6.5.1 (GTP-Binding Protein alpha Subunits, Gi-Go)
147979-21-3 (gustducin)
0 (Ligands)
0 (Receptors, G-Protein-Coupled)
0 (taste receptors, type 2)
EC 3.6.5.1 (Transducin)
تواريخ الأحداث: Date Created: 20240522 Date Completed: 20240710 Latest Revision: 20240711
رمز التحديث: 20240712
DOI: 10.1038/s41586-024-07569-9
PMID: 38776963
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07569-9