دورية أكاديمية

Neuron mapping in the Molly fish optic tectum: An emphasis on the adult neurogenesis process.

التفاصيل البيبلوغرافية
العنوان: Neuron mapping in the Molly fish optic tectum: An emphasis on the adult neurogenesis process.
المؤلفون: Hussein MT; Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt., Sayed RKA; Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt., Mokhtar DM; Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.; Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Assiut, Egypt.
المصدر: Microscopy research and technique [Microsc Res Tech] 2024 Oct; Vol. 87 (10), pp. 2336-2354. Date of Electronic Publication: 2024 May 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مواضيع طبية MeSH: Superior Colliculi*/cytology , Neurons*/cytology , Neurons*/ultrastructure , Neurogenesis*/physiology, Animals ; Immunohistochemistry ; Optic Nerve/cytology
مستخلص: Teleost fish exhibit the most pronounced and widespread adult neurogenesis. Recently, functional development and the fate of newborn neurons have been reported in the optic tectum (OT) of fish. To determine the role of neurogenesis in the OT, this study used histological, immunohistochemical, and electron microscopic investigations on 18 adult Molly fish specimens (Poecilia sphenops). The OT of the Molly fish was a bilateral lobed structure located in the dorsal part of the mesencephalon. It exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. The stratum opticum (SO) was supplied by optic nerve fibers, in which the neuropil was the main component. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). Furthermore, oligodendrocytes with their processes wrapped around the nerve fibers could be observed. The stratum album centrale (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. The neuronal cells of the SO and large tectal cells of the SAC expressed autophagy-related protein-5 (APG5). Interleukin-1β (IL-1β) was expressed in both neurons and glia cells of SGC. Additionally, inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventriculare (SPV). Also, transforming growth factor beta (TGF-β), SRY-box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. In all strata, S100 protein and Oligodendrocyte Lineage Transcription Factor 2 (Olig2) were expressed by microglia, oligodendrocytes, and astrocytes. In conclusion, it was possible to identify different varieties of neurons in the optic tectum, each with a distinct role. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT. RESEARCH HIGHLIGHTS: The OT of the Molly fish exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). The stratum album central (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. Inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventricular (SPV). Also, transforming growth factor beta (TGF-β), SRY-box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT.
(© 2024 Wiley Periodicals LLC.)
References: Amali, A. A., Lin, C. J. F., Chen, Y. H., Wang, W. L., Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., & Chen, T. T. (2004). Up‐regulation of muscle‐specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock‐down of myostatin‐1. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 229, 847–856.
Augustin, H., Mcgourty, K., Steinert, J. R., Cochemé, H. M., Adcott, J., Cabecinha, M., Vincent, A., Halff, E. F., Kittler, J. T., & Boucrot, E. (2017). Myostatin‐like proteins regulate synaptic function and neuronal morphology. Development, 144, 2445–2455.
Avitan, L., Pujic, Z., Mölter, J., Van De Poll, M., Sun, B., Teng, H., Amor, R., Scott, E. K., & Goodhill, G. J. (2017). Spontaneous activity in the zebrafish tectum reorganizes over development and is influenced by visual experience. Current Biology, 27, 2407–2419.e4.
Bancroft, J., & Gamble, M. (2002). Theory and practice of histological techniques (Vol. 172, 5th ed., pp. 593–620). Churchill Livingstone Publications.
Baumgart, E. V., Barbosa, J. S., Bally‐Cuif, L., Götz, M., & Ninkovic, J. (2012). Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia, 60, 343–357.
Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., & Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes & Development, 20, 3475–3486.
Bhattarai, P., Cosacak, M. I., Mashkaryan, V., Demir, S., Popova, S. D., Govindarajan, N., Brandt, K., Zhang, Y., Chang, W., & Ampatzis, K. (2020). Neuron‐glia interaction through serotonin‐BDNF‐NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biology, 18, e3000585.
Bhattarai, P., Thomas, A. K., Cosacak, M. I., Papadimitriou, C., Mashkaryan, V., Zhang, Y., & Kizil, C. (2017). Modeling amyloid‐β42 toxicity and neurodegeneration in adult zebrafish brain. JoVE (Journal of Visualized Experiments), 128, e56014.
Blume, Z. I., Lambert, J. M., Lovel, A. G., & Mitchell, D. M. (2020). Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Developmental Dynamics, 249, 723–740.
Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). The role of nitric oxide in innate immunity. Immunological Reviews, 173, 17–26.
Boulanger‐Weill, J., & Sumbre, G. (2019). Functional integration of newborn neurons in the zebrafish optic tectum. Frontiers in Cell and Developmental Biology, 7, 57.
Braford, M., Jr. (1983). Organization of the diencephalon and pretectum of the ray‐finned fishes. Fish Neurobiology, 2, 117–163.
Burda, J. E., Bernstein, A. M., & Sofroniew, M. V. (2016). Astrocyte roles in traumatic brain injury. Experimental Neurology, 275, 305–315.
Casares‐Crespo, L., Calatayud‐Baselga, I., García‐Corzo, L., & Mira, H. (2018). On the role of basal autophagy in adult neural stem cells and neurogenesis. Frontiers in Cellular Neuroscience, 339, 1–9.
Chen, M.‐M., Zhao, Y.‐P., Zhao, Y., Deng, S.‐L., & Yu, K. (2021). Regulation of myostatin on the growth and development of skeletal muscle. Frontiers in Cell and Developmental Biology, 9, 1–10.
Contestabile, A., & Ciani, E. (2004). Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochemistry International, 45, 903–914.
Corbo, C. P., Othman, N. A., Gutkin, M. C., Alonso, A. D. C., & Fulop, Z. L. (2012). Use of different morphological techniques to analyze the cellular composition of the adult zebrafish optic tectum. Microscopy Research and Technique, 75, 325–333.
De Santis, C., & Jerry, D. (2011). Differential tissue‐regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Molecular and Cellular Endocrinology, 335, 158–165.
Di Sabatino, A., Pickard, K. M., Rampton, D., Kruidenier, L., Rovedatti, L., Leakey, N. A., Corazza, G. R., Monteleone, G., & Macdonald, T. T. (2008). Blockade of transforming growth factor β upregulates T‐box transcription factor T‐bet, and increases T helper cell type 1 cytokine and matrix metalloproteinase‐3 production in the human gut mucosa. Gut, 57, 605–612.
Eastman, J. T., & Lannoo, M. J. (2004). Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). Journal of Morphology, 260, 117–140.
Ernst, A., & Frisén, J. (2015). Adult neurogenesis in humans‐common and unique traits in mammals. PLoS Biology, 13, e1002045.
Eyo, U. B., & Dailey, M. E. (2013). Microglia: Key elements in neural development, plasticity, and pathology. Journal of Neuroimmune Pharmacology, 8, 494–509.
Faiz, M., Sachewsky, N., Gascón, S., Bang, K. A., Morshead, C. M., & Nagy, A. (2015). Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell, 17, 624–634.
Folgueira, M., Sueiro, C., Rodríguez‐Moldes, I., Yáñez, J., & Anadón, R. (2007). Organization of the torus longitudinalis in the rainbow trout (Oncorhynchus mykiss): An immunohistochemical study of the GABAergic system and a DiI tract‐tracing study. Journal of Comparative Neurology, 503, 348–370.
Germanà, A., Marino, F., Guerrera, M. C., Campo, S., De Girolamo, P., Montalbano, G., Germanà, G. P., Ochoa‐Erena, F. J., Ciriaco, E., & Vega, J. (2008). Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio). Microscopy Research and Technique, 71, 248–255.
Ghazi, C., Bachir, A. S., & Idder, T. (2019). New record and biology of the Molly Poecilia sphenops (Poeciliidae), discovered in the Northern Sahara of Algeria. Journal of Ichthyology, 59, 602–609.
Gómez‐Márquez, J. L., Peña‐Mendoza, B., & Guzmán‐Santiago, J. L. (2016). Reproductive biology of Poecilia sphenops Valenciennes, 1846 (Cyprinidontiformes: Poeciliidae) at the Emiliano Zapata reservoir in Morelos, Mexico. Neotropical Ichthyology, 14, e140127.
Götz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology, 6, 777–788.
Grandel, H., & Brand, M. (2013). Comparative aspects of adult neural stem cell activity in vertebrates. Development Genes and Evolution, 223, 131–147.
Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., & Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Developmental Biology, 295, 263–277.
Grupp, L., Wolburg, H., & Mack, A. F. (2010). Astroglial structures in the zebrafish brain. Journal of Comparative Neurology, 518, 4277–4287.
Hamilton, N., Rutherford, H. A., Petts, J. J., Isles, H. M., Weber, T., Henneke, M., Gärtner, J., Dunning, M. J., & Renshaw, S. A. (2020). The failure of microglia to digest developmental apoptotic cells contributes to the pathology of RNASET2‐deficient leukoencephalopathy. Glia, 68, 1531–1545.
Holmström, K. M., Baird, L., Zhang, Y., Hargreaves, I., Chalasani, A., Land, J. M., Stanyer, L., Yamamoto, M., Dinkova‐Kostova, A. T., & Abramov, A. Y. (2013). Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biology Open, 2, 761–770.
Hong, S., Beja‐Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., & Barres, B. A. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352, 712–716.
Hoser, M., Potzner, M. R., Koch, J. M., Bösl, M. R., Wegner, M., & Sock, E. (2008). Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Molecular and Cellular Biology, 28, 4675–4687.
Howe, K., Gauldie, J., & Mckay, D. M. (2002). TGF‐β effects on epithelial ion transport and barrier: Reduced Cl− secretion blocked by a p38 MAPK inhibitor. American Journal of Physiology‐Cell Physiology, 283, C1667–C1674.
Huang, F. P., Wang, Z. Q., Wu, D. C., Schielke, G. P., Sun, Y., & Yang, G. Y. (2003). Early NFκB activation is inhibited during focal cerebral ischemia in interleukin‐1β‐converting enzyme deficient mice. Journal of Neuroscience Research, 73, 698–707.
Hussein, M. M., Sayed, R. K., & Mokhtar, D. M. (2023). Structural and immunohistochemical analysis of the cellular compositions of the liver of molly fish (Poecilia sphenops), focusing on its immune role. Zoological Letters, 9, 1.
Ito, Y., Tanaka, H., Okamoto, H., & Ohshima, T. (2010). Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Developmental Biology, 342, 26–38.
Iwahori, N., Nakamura, K., & Tsuda, A. (1996). Neuronal organization of the optic tectum in the hagfish, Eptatretus burgeri: A Golgi study. Anatomy and Embryology, 193, 271–279.
Jang, J., Wang, Y., Kim, H. S., Lalli, M. A., & Kosik, K. S. (2014). Nrf2, a regulator of the proteasome, controls self‐renewal and pluripotency in human embryonic stem cells. Stem Cells, 32, 2616–2625.
Jo, A., Denduluri, S., Zhang, B., Wang, Z., Yin, L., Yan, Z., Kang, R., Shi, L. L., Mok, J., & Lee, M. J. (2014). The versatile functions of Sox9 in development, stem cells, and human diseases. Genes & Diseases, 1, 149–161.
Kahroba, H., Ramezani, B., Maadi, H., Sadeghi, M. R., Jaberie, H., & Ramezani, F. (2021). The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self‐renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Research Reviews, 65, 101211.
Kálmán, M., Matuz, V., Sebők, O. M., & Lőrincz, D. (2021). Evolutionary modifications are moderate in the astroglial system of Actinopterygii as revealed by GFAP immunohistochemistry. Frontiers in Neuroanatomy, 51, 1–21.
Kappers, C. U. A., Huber, G. C., & Crosby, E. C. (1936). The comparative anatomy of the nervous system of vertebrates, including man (2 vols.).
Kärkkäinen, V., Pomeshchik, Y., Savchenko, E., Dhungana, H., Kurronen, A., Lehtonen, S., Naumenko, N., Tavi, P., Levonen, A. L., & Yamamoto, M. (2014). Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells, 32, 1904–1916.
Karnovsky, M. (1965). A formaldehyde‐glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology, 27, 137A.
Kim, H.‐K., Lee, D.‐W., Kim, E., Jeong, I., Kim, S., Kim, B.‐J., & Park, H.‐C. (2020). Notch signaling controls oligodendrocyte regeneration in the injured telencephalon of adult zebrafish. Experimental Neurobiology, 29, 417–424.
Kinoshita, M., & Ito, E. (2006). Roles of periventricular neurons in retinotectal transmission in the optic tectum. Progress in Neurobiology, 79, 112–121.
Kizil, C., Kaslin, J., Kroehne, V., & Brand, M. (2012). Adult neurogenesis and brain regeneration in zebrafish. Developmental Neurobiology, 72, 429–461.
Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., & Brand, M. (2011). Regeneration of the adult zebrafish brain from neurogenic radial glia‐type progenitors. Development, 138, 4831–4841.
Lampert, K., & Schartl, M. (2008). The origin and evolution of a unisexual hybrid: Poecilia formosa. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2901–2909.
Lara, J., Cuadrado, M., Alonso, M., & Aijón, J. (1985). The stratum album centrale in the optic tectum of Cyprinus carpio. Acta Morphologica Hungarica, 33, 21–31.
Lee, Y., Morrison, B. M., Li, Y., Lengacher, S., Farah, M. H., Hoffman, P. N., Liu, Y., Tsingalia, A., Jin, L., & Zhang, P.‐W. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487, 443–448.
Leiva‐Rodríguez, T., Romeo‐Guitart, D., Marmolejo‐Martínez‐Artesero, S., Herrando‐Grabulosa, M., Bosch, A., Forés, J., & Casas, C. (2018). ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle‐trafficking alterations in axotomized motoneurons. Cell Death & Disease, 9, 1–17.
Lindsey, B. W., Aitken, G. E., Tang, J. K., Khabooshan, M., Douek, A. M., Vandestadt, C., & Kaslin, J. (2019). Midbrain tectal stem cells display diverse regenerative capacities in zebrafish. Scientific Reports, 9, 1–20.
Loddick, S. A., & Rothwell, N. J. (1996). Neuroprotective effects of human recombinant interleukin‐1 receptor antagonist in focal cerebral ischaemia in the rat. Journal of Cerebral Blood Flow & Metabolism, 16, 932–940.
Luksch, H. (2008). Optic tectum: Sensorimotor integration. In Sensorimotor integration: Optic tectum. Encyclopedia of neuroscience. Springer, New York.
Lv, X., Jiang, H., Li, B., Liang, Q., Wang, S., Zhao, Q., & Jiao, J. (2014). The crucial role of Atg5 in cortical neurogenesis during early brain development. Scientific Reports, 4, 1–9.
Manso, M. J., & Anadon, R. (1991). The optic tectum of the dogfish Scyliorhinus canicula L.: A Golgi study. Journal of Comparative Neurology, 307, 335–349.
Mark, R. (1966). The tectal commissure and interocular transfer of pattern discrimination in cichlid fish. Experimental Neurology, 16, 215–225.
Maruska, K. P., Butler, J. M., Field, K. E., & Porter, D. T. (2017). Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, Astatotilapia burtoni. Journal of Comparative Neurology, 525, 610–638.
Meek, J. (1983). Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Research Reviews, 6, 247–297.
Meffe, G. K., & Snelson, F. (1989). An ecological overview of poeciliid fishes. In Ecology and evolution of livebearing fishes (Poeciliidae) (pp. 13–31). Prentice Hall.
Meyers, E. A., & Kessler, J. A. (2017). TGF‐β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harbor Perspectives in Biology, 9, a022244.
Miller, R. R., Minckley, W. L., & Norris, S. M. (2005). Freshwater fishes of Mexico.
Mokhtar, D. M. (2021). Fish histology: From cells to organs. CRC Press.
Mokhtar, D. M., Hussein, M. M., & Sayed, R. K. (2022). Novel identification and microscopy of the intestinal bulb of molly fish (Poecilia sphenops) with a focus on its role in immunity. Microscopy and Microanalysis, 28, 1827–1839.
Mokhtar, D. M., Hussein, M. M., Zaccone, G., Alesci, A., Lauriano, E. R., & Sayed, R. K. (2023). Gills of molly fish: A potential role in neuro‐immune interaction. Fishes, 8, 195.
Mokhtar, D. M., Sayed, R. K., Zaccone, G., Albano, M., & Hussein, M. T. (2022). Ependymal and neural stem cells of adult molly fish (Poecilia sphenops, Valenciennes, 1846) brain: Histomorphometry, immunohistochemical, and ultrastructural studies. Cells, 11, 2659.
Mokhtar, D. M., Zaccone, G., Alesci, A., Kuciel, M., Hussein, M. T., & Sayed, R. K. (2023). Main components of fish immunity: An overview of the fish immune system. Fishes, 8, 93.
Moreno‐López, B., Romero‐Grimaldi, C., Noval, J. A., Murillo‐Carretero, M., Matarredona, E. R., & Estrada, C. (2004). Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. Journal of Neuroscience, 24, 85–95.
Mueller, T., & Wullimann, M. F. (2002). BrdU‐, neuroD (nrd)‐ and Hu‐studies reveal unusual non‐ventricular neurogenesis in the postembryonic zebrafish forebrain. Mechanisms of Development, 117, 123–135.
Nave, K.‐A. (2010). Myelination and the trophic support of long axons. Nature Reviews Neuroscience, 11, 275–283.
Niedbala, W., Cai, B., & Liew, F. (2006). Role of nitric oxide in the regulation of T cell functions. Annals of the Rheumatic Diseases, 65, iii37–iii40.
Northcutt, R. G., & Butler, A. B. (1976). Retinofugal pathways in the longnose gar Lepisosteus osseus (Linnaeus). Journal of Comparative Neurology, 166, 1–15.
Northcutt, R. G., & Butler, A. B. (1980). Projections of the optic tectum in the longnose gar, Lepisosteus osseus. Brain Research, 190, 333–346.
Northmore, D. (2011). The optic tectum. In Encyclopedia of fish physiology: From genome to environment (Vol. 1, pp. 131–142). Elseiver.
O'léime, C. S., Cryan, J. F., & Nolan, Y. M. (2017). Nuclear deterrents: Intrinsic regulators of IL‐1β‐induced effects on hippocampal neurogenesis. Brain, Behavior, and Immunity, 66, 394–412.
Orger, M. B. (2016). The cellular organization of zebrafish visuomotor circuits. Current Biology, 26, R377–R385.
Park, H. C., Shin, J., Roberts, R. K., & Appel, B. (2007). An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 236, 3402–3407.
Park, S.‐Y., Kang, M.‐J., & Han, J.‐S. (2018). Interleukin‐1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells. Molecular Brain, 11, 1–12.
Peunova, N., Scheinker, V., Cline, H., & Enikolopov, G. (2001). Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain. Journal of Neuroscience, 21, 8809–8818.
Pierdominici, M., Vomero, M., Barbati, C., Colasanti, T., Maselli, A., Vacirca, D., Giovannetti, A., Malorni, W., & Ortona, E. (2012). Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. The FASEB Journal, 26, 1400–1412.
Pietri, T., Romano, S. A., Pérez‐Schuster, V., Boulanger‐Weill, J., Candat, V., & Sumbre, G. (2017). The emergence of the spatial structure of tectal spontaneous activity is independent of visual inputs. Cell Reports, 19, 939–948.
Ramírez‐García, A., Ramírez‐Herrejón, J., Medina‐Nava, M., Hernández‐Morales, R., & Domínguez‐Domínguez, O. (2018). Reproductive biology of the invasive species Pseudoxiphophorus bimaculatus and Poecilia sphenops in the Teuchitlán River, México. Journal of Applied Ichthyology, 34, 81–90.
Robledinos‐Antón, N., Rojo, A. I., Ferreiro, E., Núñez, Á., Krause, K.‐H., Jaquet, V., & Cuadrado, A. (2017). Transcription factor NRF2 controls the fate of neural stem cells in the subgranular zone of the hippocampus. Redox Biology, 13, 393–401.
Saidel, W. (2009). Evolution of the optic tectum in anamniotes. In Encyclopedia of neuroscience (pp. 1380–1387). Springer.
Saraswathy, V. M., Zhou, L., Burris, B., Dogra, D., Reischauer, S., & Mokalled, M. H. (2021). Myostatin is a negative regulator of adult neurogenesis in zebrafish. bioRxiv.
Sarkar, A., & Hochedlinger, K. (2013). The sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell, 12, 15–30.
Sayed, R. K., Zaccone, G., Capillo, G., Albano, M., & Mokhtar, D. M. (2022). Structural and functional aspects of the spleen in molly fish Poecilia sphenops (Valenciennes, 1846): Synergistic interactions of stem cells, neurons, and immune cells. Biology, 11, 779.
Schartl, A., Hornung, U., Nanda, I., Wacker, R., Müller‐Hermelink, H.‐K., Schlupp, I., Parzefall, J., Schmid, M., & Schartl, M. (1997). Susceptibility to the development of pigment cell tumors in a clone of the Amazon molly, Poecilia formosa, introduced through a microchromosome. Cancer Research, 57, 2993–3000.
Scott, C. E., Wynn, S. L., Sesay, A., Cruz, C., Cheung, M., Gaviro, M.‐V. G., Booth, S., Gao, B., Cheah, K. S., & Lovell‐Badge, R. (2010). SOX9 induces and maintains neural stem cells. Nature Neuroscience, 13, 1181–1189.
Seo, J. H., Maki, T., Maeda, M., Miyamoto, N., Liang, A. C., Hayakawa, K., Pham, L.‐D. D., Suwa, F., Taguchi, A., & Matsuyama, T. (2014). Oligodendrocyte precursor cells support blood‐brain barrier integrity via TGF‐β signaling. PLoS One, 9, e103174.
Silva, N. J., Nagashima, M., Li, J., Kakuk‐Atkins, L., Ashrafzadeh, M., Hyde, D. R., & Hitchcock, P. F. (2020). Inflammation and matrix metalloproteinase 9 (Mmp‐9) regulate photoreceptor regeneration in adult zebrafish. Glia, 68, 1445–1465.
Solek, C. M., Farooqi, N. A., Brake, N., Kesner, P., Schohl, A., Antel, J. P., & Ruthazer, E. S. (2021). Early inflammation dysregulates neuronal circuit formation in vivo via upregulation of IL‐1β. Journal of Neuroscience, 41, 6353–6366.
Sorci, G., Agneletti, A., & Donato, R. (2000). Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton‐cytoskeletons from astrocyte and myoblast cell lines. Neuroscience, 99, 773–783.
Stevanovic, M., Drakulic, D., Lazic, A., Ninkovic, D. S., Schwirtlich, M., & Mojsin, M. (2021). SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Frontiers in Molecular Neuroscience, 14, 51.
Sumithra, V., Janakiraman, A., & Altaff, K. (2014). Influence of different type of feeds on growth performance in black molly, Poecilia sphenops. International Journal of Fisheries and Aquatic Studies, 1, 24–26.
Sun, W., Cornwell, A., Li, J., Peng, S., Osorio, M. J., Aalling, N., Wang, S., Benraiss, A., Lou, N., & Goldman, S. A. (2017). SOX9 is an astrocyte‐specific nuclear marker in the adult brain outside the neurogenic regions. Journal of Neuroscience, 37, 4493–4507.
Sykiotis, G. P., & Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in drosophila. Developmental Cell, 14, 76–85.
Takebayashi, H., Yoshida, S., Sugimori, M., Kosako, H., Kominami, R., Nakafuku, M., & Nabeshima, Y.‐I. (2000). Dynamic expression of basic helix‐loop‐helix Olig family members: Implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mechanisms of Development, 99, 143–148.
Tan, G. J. H., Cheow, K. W. B., Ho, M. S. M., & Jesuthasan, S. (2021). Identification of potential astrocytes in the teleost brain. bioRxiv.
Teles, M. C., Sîrbulescu, R. F., Wellbrock, U. M., Oliveira, R. F., & Zupanc, G. K. (2012). Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus. Journal of Comparative Physiology A, 198, 427–449.
Tobler, M., & Schlupp, I. (2005). Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): A case for the red queen? Biology Letters, 1, 166–168.
Tremblay, M.‐È., Lowery, R. L., & Majewska, A. K. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biology, 8, e1000527.
Urbán, N., & Guillemot, F. (2014). Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Frontiers in Cellular Neuroscience, 8, 396.
Vanegas, H., Ebbesson, S., & Laufer, M. (1984). Morphological aspects of the teleostean optic tectum. In Comparative neurology of the optic tectum. Plenum Press.
Vanegas, H., & Ito, H. (1983). Morphological aspects of the teleostean visual system: A review. Brain Research Reviews, 6, 117–137.
Var, S. R., & Byrd‐Jacobs, C. A. (2020). Role of macrophages and microglia in zebrafish regeneration. International Journal of Molecular Sciences, 21, 4768.
Vasanth, S., Bupesh, G., Vijayakumar, T. S., Subramanian, P., & Ramasamy, P. (2018). Toxicity of atrazine and related to testicular, tissue damaging enzyme levels in Poecilia sphenops. International Journal of Current Pharmaceutical Research, 10, 75–80.
Weissman, I. L., Anderson, D. J., & Gage, F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17, 387–403.
Woodhead, A. D., Setlow, R. B., & Pond, V. (1984). The Amazon molly, Poecilia formosa, as a test animal in carcinogenicity studies: Chronic exposures to physical agents. Use of small fish species in carcinogenicity testing. In Proceedings of a symposium held at Lister Hill Center, Bethesda, Maryland, December 8–10, 1981, 1984 (p. 45). US Department of Health and Human Services, Public Health Service, National ….
Wullimann, M. F. (1994). The teleostean torus longitudinalis. European Journal of Morphology, 32, 235–242.
Xiao, T., & Baier, H. (2007). Lamina‐specific axonal projections in the zebrafish tectum require the type IV collagen dragnet. Nature Neuroscience, 10, 1529–1537.
Yuen, T. J., Silbereis, J. C., Griveau, A., Chang, S. M., Daneman, R., Fancy, S. P., Zahed, H., Maltepe, E., & Rowitch, D. H. (2014). Oligodendrocyte‐encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 158, 383–396.
Zaichikova, A., Damjanović, I., Maximov, P., Aliper, A., & Maximova, E. (2021). Neurons in the optic tectum of fish: Electrical activity and selection of appropriate stimulation. Neuroscience and Behavioral Physiology, 51, 993–1001.
Zhang, M., Liu, Y., Wang, S.‐Z., Zhong, W., Liu, B.‐H., & Tao, H. W. (2011). Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in zebrafish. Journal of Neuroscience, 31, 5460–5469.
Zhu, J., Wang, H., Sun, Q., Ji, X., Zhu, L., Cong, Z., Zhou, Y., Liu, H., & Zhou, M. (2013). Nrf2 is required to maintain the self‐renewal of glioma stem cells. BMC Cancer, 13, 1–11.
Zhu, L.‐Y., Nie, L., Zhu, G., Xiang, L.‐X., & Shao, J.‐Z. (2013). Advances in research of fish immune‐relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental & Comparative Immunology, 39, 39–62.
Zou, J., & Secombes, C. J. (2016). The function of fish cytokines. Biology, 5, 23.
Zupanc, G. K. (2009). Towards brain repair: Insights from teleost fish. In Seminars in cell & developmental biology (pp. 683–690). Elsevier.
Zupanc, G. K., & Sîrbulescu, R. F. (2011). Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. European Journal of Neuroscience, 34, 917–929.
Zutshi, B., & Singh, A. (2017). Interrelationship of photoperiod and feed utilization on growth and reproductive performance in the red eyed orange molly (Poecilia sphenops). bioRxiv, 209346.
فهرسة مساهمة: Keywords: SOX9; astrocytes; glia; neural stem cells; teleosts
تواريخ الأحداث: Date Created: 20240523 Date Completed: 20240901 Latest Revision: 20240901
رمز التحديث: 20240902
DOI: 10.1002/jemt.24617
PMID: 38778562
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24617