دورية أكاديمية

Intraguild processes drive space-use patterns in a large-bodied marine predator community.

التفاصيل البيبلوغرافية
العنوان: Intraguild processes drive space-use patterns in a large-bodied marine predator community.
المؤلفون: van Zinnicq Bergmann MPM; Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida, USA.; Bimini Biological Field Station Foundation, Bimini, The Bahamas., Griffin LP; Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA., Bodey TW; School of Biological Sciences, King's College, University of Aberdeen, Aberdeen, UK., Guttridge TL; Bimini Biological Field Station Foundation, Bimini, The Bahamas.; Saving the Blue, Cooper City, Florida, USA., Aarts G; Wildlife Ecology and Conservation Group and Wageningen Marine Research, Wageningen University and Research, Den Helder, The Netherlands.; Royal Netherlands Institute for Sea Research, Texel, The Netherlands., Heithaus MR; Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida, USA., Smukall MJ; Bimini Biological Field Station Foundation, Bimini, The Bahamas.; College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, Alaska, USA., Papastamatiou YP; Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida, USA.
المصدر: The Journal of animal ecology [J Anim Ecol] 2024 Jul; Vol. 93 (7), pp. 876-890. Date of Electronic Publication: 2024 May 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Predatory Behavior* , Food Chain* , Sharks*/physiology , Ecosystem*, Animals ; Skates, Fish/physiology ; Bahamas ; Models, Biological ; Animal Distribution ; Telemetry
مستخلص: Interspecific interactions, including predator-prey, intraguild predation (IGP) and competition, may drive distribution and habitat use of predator communities. However, elucidating the relative importance of these interactions in shaping predator distributions is challenging, especially in marine communities comprising highly mobile species. We used individual-based models (IBMs) to predict the habitat distributions of apex predators, intraguild (IG) prey and prey. We then used passive acoustic telemetry to test these predictions in a subtropical marine predator community consisting of eight elasmobranch (i.e. shark and ray) species in Bimini, The Bahamas. IBMs predicted that prey and IG prey will preferentially select habitats based on safety over resources (food), with stronger selection for safe habitat by smaller prey. Elasmobranch space-use patterns matched these predictions. Species with predator-prey and asymmetrical IGP (between apex and small mesopredators) interactions showed the clearest spatial separation, followed by asymmetrical IGP among apex and large mesopredators. Competitors showed greater spatial overlap although with finer-scale differences in microhabitat use. Our study suggests space-use patterns in elasmobranchs are at least partially driven by interspecific interactions, with stronger spatial separation occurring where interactions include predator-prey relationships or IGP.
(© 2024 The Authors. Journal of Animal Ecology © 2024 British Ecological Society.)
References: Aarts, G., Mul, E., Fieberg, J., Brasseur, S., van Gils, J. A., Matthiopoulos, J., & Riotte‐Lambert, L. (2021). Individual‐level memory is sufficient to create spatial segregation among neighboring colonies of central place foragers. The American Naturalist, 198(2), E37–E52. https://doi.org/10.1086/715014.
Arias‐Del Razo, I., Hernández, L., Laundré, J. W., & Velasco‐Vázquez, L. (2012). The landscape of fear: Habitat use by a predator (Canis latrans) and its main prey (Lepus californicus and Sylvilagus audubonii). Canadian Journal of Zoology, 90(6), 683–693. https://doi.org/10.1139/z2012‐036.
Baird, R. W. (2001). Status of killer whales, Orcinus orca, in Canada. Canadian Field‐Naturalist, 115(4), 676–701.
Bethea, D. M., Ajemian, M. J., Carlson, J. K., Hoffmayer, E. R., Imhoff, J. L., Grubbs, R. D., Peterson, C. T., & Burgess, G. H. (2015). Distribution and community structure of coastal sharks in the northeastern Gulf of Mexico. Environmental Biology of Fishes, 98(5), 1233–1254. https://doi.org/10.1007/s10641‐014‐0355‐3.
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., & Jones, Z. M. (2016). Mlr: Machine learning in R. Journal of Machine Learning Research, 17, 1–5.
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002). Evaluating resource selection functions. Ecological Modelling, 157(2–3), 281–300. https://doi.org/10.1016/S0304‐3800(02)00200‐4.
Breiman, L. (2001). RFRSF: Employee turnover prediction based on random forests and survival analysis. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324.
Brena, P. F., Mourier, J., Planes, S., & Clua, E. E. (2018). Concede or clash? Solitary sharks competing for food assess rivals to decide. Proceedings of the Royal Society B: Biological Sciences, 285(1875), 20180006. https://doi.org/10.1098/rspb.2018.0006.
Brown, J. S. (1989). Desert rodent community structure: A test of four mechanisms of coexistence. Ecological Monographs, 59(1), 1–20. https://doi.org/10.2307/2937289.
Brown, J. S. (1998). Game theory and habitat selection. In L. A. Dugatkin & H. K. Reeve (Eds.), Game theory and animal behavior. Oxford University Press.
Campbell, H. A., Watts, M. E., Dwyer, R. G., & Franklin, C. E. (2012). V‐track: Software for analysing and visualising animal movement from acoustic telemetry detections. Marine and Freshwater Research, 63(9), 815–820. https://doi.org/10.1071/MF12194.
Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., Richards, S. A., Nisbet, R. M., & Case, T. J. (2002). The interaction between predation and competition: A review and synthesis. Ecology Letters, 5(2), 302–315. https://doi.org/10.1046/j.1461‐0248.2002.00315.x.
Cortés, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56(5), 707–717. https://doi.org/10.1006/jmsc.1999.0489.
Cresswell, W., Smith, R. D., & Ruxton, G. D. (2001). Absolute foraging rate and susceptibility to interference competition in blackbirds varies with patch conditions. Journal of Animal Ecology, 70(2), 228–236. https://doi.org/10.1111/j.1365‐2656.2001.00487.x.
Dedman, S. L., & van Zinnicq Bergmann, M. P. M. (2023). movegroup: Visualizing and quantifying space use data for groups of animals. https://github.com/SimonDedman/movegroup https://doi.org/10.5281/zenodo.10607927.
Doak, D. F., Estes, J. A., Halpern, B. S., Jacob, U., Lindberg, D. R., Lovvorn, J., Monson, D. H., Tinker, M. T., Williams, T. M., Wootton, J. T., Carroll, I., Emmerson, M., Micheli, F., & Novak, M. (2008). Understanding and predicting ecological dynamics: Are major surprises inevitable? Ecology, 89(4), 952–961. https://doi.org/10.1890/07‐0965.1.
Dröge, E., Creel, S., Becker, M. S., & M'soka, J. (2017). Spatial and temporal avoidance of risk within a large carnivore guild. Ecology and Evolution, 7(1), 189–199. https://doi.org/10.1002/ece3.2616.
Dudley, S. F. J., & Simpfendorfer, C. A. (2006). Population status of 14 shark species caught in the protective gillnets off KwaZulu‐Natal beaches, South Africa, 1978–2003. Marine and Freshwater Research, 57(2), 225. https://doi.org/10.1071/MF05156.
Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B., & Worm, B. (2016). Megafaunal impacts on structure and function of ocean ecosystems. Annual Review of Environment and Resources, 41, 83–116. https://doi.org/10.1146/annurev‐environ‐110615‐085622.
Feldheim, K. A., Gruber, S. H., Dibattista, J. D., Babcock, E. A., Kessel, S. T., Hendry, A. P., Pikitch, E. K., Ashley, M. V., & Chapman, D. D. (2014). Two decades of genetic profiling yields first evidence of natal philopatry and long‐term fidelity to parturition sites in sharks. Molecular Ecology, 23(1), 110–117. https://doi.org/10.1111/mec.12583.
Fourqurean, J. W., Manuel, S. A., Coates, K. A., Massey, S. C., & Kenworthy, W. J. (2019). Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the Green Sea Turtle Chelonia mydas. Estuaries and Coasts, 42(6), 1524–1540. https://doi.org/10.1007/s12237‐019‐00587‐1.
Franz, M., Whyte, L., Atwood, T., Menning, D., Sonsthagen, S., Talbot, S., Laidre, K., Gonzalez, E., & McKinney, M. (2023). Fecal DNA metabarcoding shows credible short‐term prey detections and explains variation in the gut microbiome of two polar bear subpopulations. Marine Ecology Progress Series, 704, 131–147. https://doi.org/10.3354/meps14228.
Gallagher, A. J., Shipley, O. N., van Zinnicq Bergmann, M. P. M., Brownscombe, J. W., Dahlgren, C. P., Frisk, M. G., Griffin, L. P., Hammerschlag, N., Kattan, S., Papastamatiou, Y. P., Shea, B. D., Kessel, S. T., & Duarte, C. M. (2021). Spatial connectivity and drivers of shark habitat use within a large marine protected area in the Caribbean, The Bahamas shark sanctuary. Frontiers in Marine Science, 7, 608848. https://doi.org/10.3389/fmars.2020.608848.
Griffin, L. P., Casselberry, G. A., Hart, K. M., Jordaan, A., Becker, S. L., Novak, A. J., DeAngelis, B. M., Pollock, C. G., Lundgren, I., Hillis‐Starr, Z., Danylchuk, A. J., & Skomal, G. B. (2021). A novel framework to predict relative habitat selection in aquatic systems: Applying machine learning and resource selection functions to acoustic telemetry Data from multiple shark species. Frontiers in Marine Science, 8, 631262. https://doi.org/10.3389/fmars.2021.631262.
Guttridge, T. L., Van Zinnicq Bergmann, M. P. M., Bolte, C., Howey, L. A., Finger, J. S., Kessel, S. T., Brooks, J. L., Winram, W., Bond, M. E., Jordan, L. K. B., Cashman, R. C., Tolentino, E. R., Grubbs, R. D., & Gruber, S. H. (2017). Philopatry and regional connectivity of the great hammerhead shark, Sphyrna mokarran in the U.S. and Bahamas. Frontiers in Marine Science, 4, 3. https://doi.org/10.3389/fmars.2017.00003.
Harding, L., Jackson, A., Barnett, A., Donohue, I., Halsey, L., Huveneers, C., Meyer, C., Papastamatiou, Y., Semmens, J. M., Spencer, E., Watanabe, Y., & Payne, N. (2021). Endothermy makes fishes faster but does not expand their thermal niche. Functional Ecology, 35(9), 1951–1959. https://doi.org/10.1111/1365‐2435.13869.
Heim, V., Dhellemes, F., Smukall, M. J., Gruber, S. H., & Guttridge, T. L. (2021). Effects of food provisioning on the daily ration and dive site use of great hammerhead sharks, Sphyrna mokarran. Frontiers in Marine Science, 8, 628469. https://doi.org/10.3389/fmars.2021.628469.
Heithaus, M. R. (2001). Habitat selection by predators and prey in communities with asymmetrical intraguild predation. Oikos, 92(3), 542–554. https://doi.org/10.1034/j.1600‐0706.2001.920315.x.
Heithaus, M. R., Dill, L. M., Marshall, G. J., & Buhleier, B. (2002). Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Marine Biology, 140(2), 237–248. https://doi.org/10.1007/s00227‐001‐0711‐7.
Heupel, M. R., Lédée, E. J. I., & Simpfendorfer, C. A. (2018). Telemetry reveals spatial separation of co‐occurring reef sharks. Marine Ecology Progress Series, 589, 179–192. https://doi.org/10.3354/meps12423.
Heupel, M. R., Munroe, S. E. M., Lédée, E. J. I., Chin, A., & Simpfendorfer, C. A. (2019). Interspecific interactions, movement patterns and habitat use in a diverse coastal shark assemblage. Marine Biology, 166(6), 1–17. https://doi.org/10.1007/s00227‐019‐3511‐7.
Holmgren, N. (1995). The ideal free distribution of unequal competitors: Predictions from a behaviour‐based functional response. The Journal of Animal Ecology, 64(2), 197. https://doi.org/10.2307/5755.
Hugie, D. M., & Dill, L. M. (1994). Fish and game: A game theoretic approach to habitat selection by predators and prey. Journal of Fish Biology, 45, 151–169. https://doi.org/10.1006/jfbi.1994.1220.
Kachel, S. M., Karimov, K., & Wirsing, A. J. (2022). Predator niche overlap and partitioning and potential interactions in the mountains of Central Asia. Journal of Mammalogy, 103(5), 1019–1029. https://doi.org/10.1093/jmammal/gyac026.
Karanth, K. U., Srivathsa, A., Vasudev, D., Puri, M., Parameshwaran, R., & Kumar, N. S. (2017). Spatio‐temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B: Biological Sciences, 284(1848), 20161860. https://doi.org/10.1098/rspb.2016.1860.
Kimbrell, T., Holt, R. D., & Lundberg, P. (2007). The influence of vigilance on intraguild predation. Journal of Theoretical Biology, 249(2), 218–234. https://doi.org/10.1016/j.jtbi.2007.07.031.
Kranstauber, B., Smolla, M., & Scharf, A. K. (2022). move: Visualizing and analyzing animal track data. R package version 4.1.8. https://CRAN.R‐project.org/package=move.
Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M., & Safi, K. (2012). A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology, 81(4), 738–746. https://doi.org/10.1111/j.1365‐2656.2012.01955.x.
Kranstauber, B., Smolla, M., & Safi, K. (2017). Similarity in spatial utilization distributions measured by the earth mover's distance. Methods in Ecology and Evolution, 8(2), 155–160. https://doi.org/10.1111/2041‐210X.12649.
Lear, K. O., Whitney, N. M., Morris, J. J., & Gleiss, A. C. (2021). Temporal niche partitioning as a novel mechanism promoting co‐existence of sympatric predators in marine systems. Proceedings of the Royal Society B: Biological Sciences, 288(1954), 20210816. https://doi.org/10.1098/rspb.2021.0816.
Lesmeister, D. B., Nielsen, C. K., Schauber, E. M., & Hellgren, E. C. (2015). Spatial and temporal structure of a mesocarnivore guild in midwestern north America. Wildlife Monographs, 191(1), 1–61. https://doi.org/10.1002/wmon.1015.
Lester, E. K., Langlois, T. J., McCormick, M. I., Simpson, S. D., Bond, T., & Meekan, M. G. (2021). Relative influence of predators, competitors and seascape heterogeneity on behaviour and abundance of coral reef mesopredators. Oikos, 130(12), 2239–2249. https://doi.org/10.1111/oik.08463.
Lonsinger, R. C., Gese, E. M., Bailey, L. L., & Waits, L. P. (2017). The roles of habitat and intraguild predation by coyotes on the spatial dynamics of kit foxes. Ecosphere, 8(3). https://doi.org/10.1002/ecs2.1749.
Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC Press.
Manly, B. F. L., McDonald, L., Thomas, D. L., McDonald, T. L., & Erickson, W. P. (2007). Resource selection by animals: Statistical design and analysis for field studies. Springer Science & Business Media.
Menezes, J. F. S., & Kotler, B. P. (2019). The generalized ideal free distribution model: Merging current ideal free distribution models into a central framework. Ecological Modelling, 397(January), 47–54. https://doi.org/10.1016/j.ecolmodel.2019.01.008.
Morosinotto, C., Villers, A., Thomson, R. L., Varjonen, R., & Korpimäki, E. (2017). Competitors and predators alter settlement patterns and reproductive success of an intraguild prey. Ecological Monographs, 87(1), 4–20. https://doi.org/10.1002/ecm.1238.
Myrberg, A. A., & Gruber, S. H. (1974). The behavior of the Bonnethead shark, Sphyrna tiburo. Copeia, 2, 358. https://doi.org/10.2307/1442530.
n+p. (2015). Bimini Islands Habitat Classification. Save Our Seas Foundation (SOSF). 9 pages + 3 annexes. Unpublished.
O'Shea, O. R., Mandelman, J., Talwar, B., & Brooks, E. J. (2015). Novel observations of an opportunistic predation event by four apex predatory sharks. Marine and Freshwater Behaviour and Physiology, 48(5), 374–380. https://doi.org/10.1080/10236244.2015.1054097.
Papastamatiou, Y. P., Bodey, T. W., Caselle, J. E., Bradley, D., Freeman, R., Friedlander, A. M., & Jacoby, D. M. P. (2020). Multiyear social stability and social information use in reef sharks with diel fission–fusion dynamics. Proceedings of the Royal Society B: Biological Sciences, 287(1932), 20201063. https://doi.org/10.1098/rspb.2020.1063.
Papastamatiou, Y. P., Bodey, T. W., Friedlander, A. M., Lowe, C. G., Bradley, D., Weng, K., Priestley, V., & Caselle, J. E. (2018). Spatial separation without territoriality in shark communities. Oikos, 127(6), 767–779. https://doi.org/10.1111/oik.04289.
Papastamatiou, Y. P., Wetherbee, B. M., Lowe, C. G., & Crow, G. L. (2006). Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: Evidence for resource partitioning and competitive exclusion. Marine Ecology Progress Series, 320, 239–251. https://doi.org/10.3354/meps320239.
Polis, G. A., & Holt, R. D. (1992). Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution, 7(5), 151–154. https://doi.org/10.1016/0169‐5347(92)90208‐S.
Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20(1), 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501.
Potts, J. R., & Lewis, M. A. (2014). How do animal territories form and change? Lessons from 20 years of mechanistic modelling. Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20140231. https://doi.org/10.1098/rspb.2014.0231.
Railsback, S. F., & Grimm, V. (2019). Agent‐based and individual‐based modeling: A practical introduction (2nd ed.). Princeton University Press.
Roffler, G. H., Eriksson, C. E., Allen, J. M., & Levi, T. (2023). Recovery of a marine keystone predator transforms terrestrial predator–prey dynamics. Proceedings of the National Academy of Sciences of the United States of America, 120(5), e2209037120. https://doi.org/10.1073/pnas.2209037120.
RStudio Team. (2022). RStudio: Integrated development for R. RStudio, Inc. http://www.rstudio.com/.
Sabando, M. A., Rieucau, G., Bradley, D., Caselle, J. E., & Papastamatiou, Y. P. (2020). Habitat‐specific inter and intraspecific behavioral interactions among reef sharks. Oecologia, 193(2), 371–376. https://doi.org/10.1007/s00442‐020‐04676‐y.
Salo, P., Banks, P. B., Dickman, C. R., & Korpimäki, E. (2010). Predator manipulation experiments: Impacts on populations of terrestrial vertebrate prey. Ecological Monographs, 80(4), 531–546. https://doi.org/10.1890/09‐1260.1.
Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2014). Influence of environmental factors on shark and ray movement, behaviour and habitat use: A review. Reviews in Fish Biology and Fisheries, 24(4), 1089–1103. https://doi.org/10.1007/s11160‐014‐9364‐8.
Shoemaker, K. T., Heffelfinger, L. J., Jackson, N. J., Blum, M. E., Wasley, T., & Stewart, K. M. (2018). A machine‐learning approach for extending classical wildlife resource selection analyses. Ecology and Evolution, 8(6), 3556–3569. https://doi.org/10.1002/ece3.3936.
Smukall, M. J., Seitz, A. C., Dhellemmes, F., van Zinnicq Bergmann, M. P. M., Heim, V., Gruber, S. H., & Guttridge, T. L. (2022). Residency, site fidelity, and regional movement of tiger sharks (Galeocerdo cuvier) at a pupping location in The Bahamas. Sustainability, 14(16), 10017. https://doi.org/10.3390/su141610017.
Snider, A. M., Bonisoli‐Alquati, A., Pérez‐Umphrey, A. A., Stouffer, P. C., & Taylor, S. S. (2022). Metabarcoding of stomach contents and fecal samples provide similar insights about seaside sparrow diet. Ornithological Applications, 124(1), 1–12. https://doi.org/10.1093/ornithapp/duab060.
Steinmetz, R., Seuaturien, N., & Chutipong, W. (2013). Tigers, leopards, and dholes in a half‐empty forest: Assessing species interactions in a guild of threatened carnivores. Biological Conservation, 163, 68–78. https://doi.org/10.1016/j.biocon.2012.12.016.
Swanson, A., Caro, T., Davies‐Mostert, H., Mills, M. G. L., Macdonald, D. W., Borner, M., Masenga, E., & Packer, C. (2014). Cheetahs and wild dogs show contrasting patterns of suppression by lions. Journal of Animal Ecology, 83(6), 1418–1427. https://doi.org/10.1111/1365‐2656.12231.
Towner, A., Watson, R., Kock, A., Papastamatiou, Y., Sturup, M., Gennari, E., Baker, K., Booth, T., Dicken, M., Chivell, W., Elwen, S., Kaschke, T., Edwards, D., & Smale, M. (2022). Fear at the top: Killer whale predation drives white shark absence at South Africa's largest aggregation site. African Journal of Marine Science, 44(2), 139–152. https://doi.org/10.2989/1814232X.2022.2066723.
Trave, C., & Sheaves, M. (2014). Bimini Islands: A characterization of the two major nursery areas; status and perspectives. Springerplus, 3(1), 270. https://doi.org/10.1186/2193‐1801‐3‐270.
van Zinnicq Bergmann, M. P. M., Griffin, L. P., Bodey, T. W., Guttridge, T. L., Aarts, G., Heithaus, M. R., Smukall, M. J., & Papastamatiou, Y. P. (2024). Data from: Intraguild processes drive space‐use patterns in a large‐bodied marine predator community. Dryad Digital Repository https://doi.org/10.5061/dryad.8gtht76x4.
van Zinnicq Bergmann, M. P. M., Guttridge, T. L., Smukall, M. J., Adams, V. M., Bond, M. E., Burke, P. J., Fuentes, M. M. P. B., Heinrich, D. D. U., Huveneers, C., Gruber, S. H., & Papastamatiou, Y. P. (2022). Using movement models and systematic conservation planning to inform marine protected area design for a multi‐species predator community. Biological Conservation, 266, 109469. https://doi.org/10.1016/j.biocon.2022.109469.
van Zinnicq Bergmann, M. P. M., Postaire, B. D., Gastrich, K., Heithaus, M. R., Hoopes, L. A., Lyons, K., Papastamatiou, Y. P., Schneider, E. V. C., Strickland, B. A., Talwar, B. S., Chapman, D. D., & Bakker, J. (2021). Elucidating shark diets with DNA metabarcoding from cloacal swabs. Molecular Ecology Resources, 21(4), 1056–1067. https://doi.org/10.1111/1755‐0998.13315.
Vanak, A. T., Fortin, D., Thaker, M., Ogden, M., Owen, C., Greatwood, S., & Slotow, R. (2013). Moving to stay in place: Behavioral mechanisms for coexistence of African large carnivores. Ecology, 94(11), 2619–2631. https://doi.org/10.1890/13‐0217.1.
Vaudo, J. J., & Heithaus, M. R. (2013). Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: Behavioral thermoregulation or avoiding predation risk? PLoS One, 8(4), e61907. https://doi.org/10.1371/journal.pone.0061907.
Wakefield, E. D., Bodey, T. W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R. G., Green, J. A., Grémillet, D., Jackson, A. L., Jessopp, M. J., Kane, A., Langston, R. H. W., Lescroël, A., Murray, S., Le Nuz, M., Patrick, S. C., Péron, C., Soanes, L. M., … Hamer, K. C. (2013). Space partitioning without territoriality in gannets. Science, 341(6141), 68–70. https://doi.org/10.1126/science.1236077.
Watanabe, Y. Y., & Papastamatiou, Y. P. (2023). Biologging and biotelemetry: Tools for understanding the lives and environments of marine animals. Annual Review of Animal Biosciences, 11, 247–267. https://doi.org/10.1146/annurev‐animal‐050322‐073657.
Weideli, O. C., Daly, R., Peel, L. R., Heithaus, M. R., Shivji, M. S., Planes, S., & Papastamatiou, Y. P. (2023). Elucidating the role of competition in driving spatial and trophic niche patterns in sympatric juvenile sharks. Oecologia, 201(3), 673–688. https://doi.org/10.1007/s00442‐023‐05355‐4.
Weimerskirch, H. (2007). Are seabirds foraging for unpredictable resources? Deep Sea Research Part II: Topical Studies in Oceanography, 54(3–4), 211–223. https://doi.org/10.1016/j.dsr2.2006.11.013.
Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer‐Based Modeling. Northwestern University. http://ccl.northwestern.edu/netlogo/.
Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01.
معلومات مُعتمدة: Guy Harvey Foundation; Swiss Shark Foundation; Save Our Seas Foundation
فهرسة مساهمة: Keywords: biotelemetry; competition; habitat selection; ideal free distribution; intraguild; predation; random forest; resource selection functions
تواريخ الأحداث: Date Created: 20240523 Date Completed: 20240703 Latest Revision: 20240703
رمز التحديث: 20240703
DOI: 10.1111/1365-2656.14108
PMID: 38778676
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.14108