دورية أكاديمية

Interactions of cumulative load with biomarkers of cartilage turnover predict knee cartilage change over 2 years: data from the osteoarthritis initiative.

التفاصيل البيبلوغرافية
العنوان: Interactions of cumulative load with biomarkers of cartilage turnover predict knee cartilage change over 2 years: data from the osteoarthritis initiative.
المؤلفون: Ivanochko NK; Department of Kinesiology and Health Sciences, University of Waterloo, Room 1036 Burt Matthews Hall, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada., Gatti AA; Department of Radiology, Stanford University, Stanford, USA.; NeuralSeg Ltd., Hamilton, Canada., Stratford PW; School of Rehabilitation Science, McMaster University, Hamilton, Canada., Maly MR; Department of Kinesiology and Health Sciences, University of Waterloo, Room 1036 Burt Matthews Hall, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada. mrmaly@uwaterloo.ca.
المصدر: Clinical rheumatology [Clin Rheumatol] 2024 Jul; Vol. 43 (7), pp. 2317-2327. Date of Electronic Publication: 2024 May 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 8211469 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1434-9949 (Electronic) Linking ISSN: 07703198 NLM ISO Abbreviation: Clin Rheumatol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2008->: Heidelberg : Springer
Original Publication: Brussels : Acta Medica Belgica, [1982-
مواضيع طبية MeSH: Osteoarthritis, Knee*/metabolism , Cartilage, Articular*/diagnostic imaging , Cartilage, Articular*/metabolism , Cartilage, Articular*/pathology , Biomarkers*/blood , Cartilage Oligomeric Matrix Protein*/blood , Magnetic Resonance Imaging* , Knee Joint*/diagnostic imaging , Collagen Type II*/blood, Humans ; Middle Aged ; Female ; Male ; Aged ; Disease Progression ; Weight-Bearing ; Body Mass Index
مستخلص: The purpose was to investigate relationships of cumulative load and cartilage turnover biomarkers with 2-year changes in cartilage in knee osteoarthritis. From participants with Kellgren-Lawrence (KL) grades of 1 to 3, cartilage thickness and transverse relaxation time (T2) were computed from 24-month (baseline) and 48-month magnetic resonance images. Cumulative load was the interaction term of the Physical Activity Scale for the Elderly (PASE) and body mass index (BMI). Serum cartilage oligomeric matrix protein (COMP) and the nitrated form of type II collagen (Coll2-1 NO2) were collected at baseline. Multiple regressions (adjusted for baseline age, KL grade, cartilage measures, pain, comorbidity) evaluated the relationships of cumulative load and biomarkers with 2-year changes. In 406 participants (63.7 (8.7) years), interactions of biomarkers with cumulative load weakly predicted 2-year cartilage changes: (i) COMP × cumulative load explained medial tibia thickness change (R 2 increased 0.062 to 0.087, p < 0.001); (ii) Coll2-1 NO2 × cumulative load explained central medial femoral T2 change (R 2 increased 0.177 to 0.210, p < 0.001); and (iii) Coll2-1 NO2 × cumulative load explained lateral tibia T2 change (R 2 increased 0.166 to 0.188, p < 0.001). Moderate COMP or Coll2-1 NO2 at baseline appeared protective. High COMP or Coll2-1 NO2, particularly with high BMI and low PASE, associated with worsening cartilage. Moderate serum concentrations of cartilage turnover biomarkers, at high and low physical activity, associated with maintained cartilage outcomes over 2 years. In conclusion, high concentrations of cartilage turnover biomarkers, particularly with high BMI and low physical activity, associated with knee cartilage thinning and increasing T2 over 2 years. Key Points • Higher quality cartilage may be better able to tolerate a larger cumulative load than poor quality cartilage. • Among participants enrolled in the Osteoarthritis Initiative Biomarkers Consortium Project, a representation of cumulative load exposure and its interaction with cartilage turnover biomarkers were weakly related with 2-year change in knee cartilage. • These findings suggest that cartilage turnover is a factor that modifies the relationship between loading exposure and cartilage loss in knee OA.
(© 2024. The Author(s), under exclusive licence to International League of Associations for Rheumatology (ILAR).)
References: Brisson NM, Wiebenga EG, Stratford PW et al (2017) Baseline knee adduction moment interacts with body mass index to predict loss of medial tibial cartilage volume over 2.5 years in knee Osteoarthritis. J Orthop Res 35:2476–2483. https://doi.org/10.1002/jor.23564. (PMID: 10.1002/jor.2356428323351)
Chang AH, Moisio KC, Chmiel JS et al (2015) External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthr Cartil 23:1099–1106. https://doi.org/10.1016/j.joca.2015.02.005. (PMID: 10.1016/j.joca.2015.02.005)
Robbins SM, Birmingham TB, Callaghan JP et al (2011) Association of pain with frequency and magnitude of knee loading in knee osteoarthritis. Arthritis Care Res (Hoboken) 63:991–997. https://doi.org/10.1002/acr.20476. (PMID: 10.1002/acr.2047621485019)
Brenneman Wilson EC, Gatti AA, Keir PJ, Maly MR (2021) Daily cumulative load and body mass index alter knee cartilage response to running in women. Gait Posture 88:192–197. https://doi.org/10.1016/j.gaitpost.2021.05.030. (PMID: 10.1016/j.gaitpost.2021.05.03034111696)
Voinier D, Neogi T, Stefanik JJ et al (2020) Using cumulative load to explain how body mass index and daily walking relate to worsening knee cartilage damage over two years: the MOST study. Arthritis Rheumatol 72:957–965. https://doi.org/10.1002/art.41181. (PMID: 10.1002/art.41181317850758020569)
Browning RC, Kram R (2007) Effects of obesity on the biomechanics of walking at different speeds. Med Sci Sports Exerc 39:1632–1641. https://doi.org/10.1249/mss.0b013e318076b54b. (PMID: 10.1249/mss.0b013e318076b54b17805097)
Messier SP (2008) Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management. Rheum Dis Clin North Am 34:713–729. https://doi.org/10.1016/j.rdc.2008.04.007. (PMID: 10.1016/j.rdc.2008.04.007186872792596954)
Mezhov V, Ciccutini FM, Hanna FS et al (2014) Does obesity affect knee cartilage? A systematic review of magnetic resonance imaging data. Obes Rev 15:143–157. https://doi.org/10.1111/obr.12110. (PMID: 10.1111/obr.1211024118701)
Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32. https://doi.org/10.1136/ard.2010.144725. (PMID: 10.1136/ard.2010.14472522135412)
Gersing AS, Schwaiger BJ, Nevitt MC et al (2019) Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the Osteoarthritis Initiative. Osteoarthr Cartil 27:863–870. https://doi.org/10.1016/j.joca.2019.01.018. (PMID: 10.1016/j.joca.2019.01.018)
Gersing AS, Solka M, Joseph GB et al (2016) Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the Osteoarthritis Initiative. Osteoarthr Cartil 24:1126–1134. https://doi.org/10.1016/j.joca.2016.01.984. (PMID: 10.1016/j.joca.2016.01.984)
Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823. https://doi.org/10.1016/j.berh.2011.11.013. (PMID: 10.1016/j.berh.2011.11.013222652633266544)
Coburn SL, Crossley KM, Kemp JL et al (2023) Is running good or bad for your knees? A systematic review and meta-analysis of cartilage morphology and composition changes in the tibiofemoral and patellofemoral joints. Osteoarthr Cartil 31:144–157. https://doi.org/10.1016/j.joca.2022.09.013. (PMID: 10.1016/j.joca.2022.09.013)
Khan MCM, O’Donovan J, Charlton JM et al (2022) The influence of running on lower limb cartilage: a systematic review and meta-analysis. Sport Med 52:55–74. https://doi.org/10.1007/s40279-021-01533-7. (PMID: 10.1007/s40279-021-01533-7)
Hoch JM, Mattacola CG, Medina McKeon JM et al (2011) Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil 19:1396–1404. https://doi.org/10.1016/j.joca.2011.09.005. (PMID: 10.1016/j.joca.2011.09.005)
Hick A-C, Malaise M, Loeuille D et al (2021) Cartilage biomarkers Coll2-1 and Coll2-1NO2 are associated with knee OA MRI features and are helpful in identifying patients at risk of disease worsening. Cartilage 13:1637S-1647S. https://doi.org/10.1177/19476035211021892. (PMID: 10.1177/19476035211021892341284098808823)
Mobasheri A, Lambert C, Henrotin Y (2019) Coll2-1 and Coll2-1NO2 as exemplars of collagen extracellular matrix turnover – biomarkers to facilitate the treatment of osteoarthritis? Expert Rev Mol Diagn 19:803–812. https://doi.org/10.1080/14737159.2019.1646641. (PMID: 10.1080/14737159.2019.164664131327279)
Beattie KA, MacIntyre NJ, Ramadan K et al (2012) Longitudinal changes in intermuscular fat volume and quadriceps muscle volume in the thighs of women with knee osteoarthritis. Arthritis Care Res (Hoboken) 64:22–29. https://doi.org/10.1002/acr.20628. (PMID: 10.1002/acr.2062821905259)
Kothari M, Guermazi A, von Ingersleben G et al (2004) Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 14:1568–1573. https://doi.org/10.1007/s00330-004-2312-6. (PMID: 10.1007/s00330-004-2312-615150666)
Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441. https://doi.org/10.1016/j.joca.2008.06.016. (PMID: 10.1016/j.joca.2008.06.016)
Gatti AA, Maly MR (2021) Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative. Magn Reson Mater Physics, Biol Med 34:859–875. https://doi.org/10.1007/s10334-021-00934-z. (PMID: 10.1007/s10334-021-00934-z)
Eckstein F (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441. https://doi.org/10.1136/ard.2005.039370. (PMID: 10.1136/ard.2005.03937016126797)
Subburaj K, Kumar D, Souza RB et al (2012) The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. Am J Sports Med 40:2134–2141. https://doi.org/10.1177/0363546512449816. (PMID: 10.1177/0363546512449816227295053660554)
Urish KL, Williams AA, Durkin JR, Chu CR (2013) Registration of magnetic resonance image series for knee articular cartilage analysis: data from the Osteoarthritis Initiative. Cartilage 4:20–27. https://doi.org/10.1177/1947603512451745. (PMID: 10.1177/1947603512451745239978653753048)
Washburn RA, Smith KW, Jette AM, Janney CA (1993) The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162. https://doi.org/10.1016/0895-4356(93)90053-4. (PMID: 10.1016/0895-4356(93)90053-48437031)
Dunlop DD, Semanik P, Song J et al (2010) Moving to maintain function in knee osteoarthritis: evidence from the Osteoarthritis Initiative. Arch Phys Med Rehabil 91:714–721. https://doi.org/10.1016/j.apmr.2010.01.015. (PMID: 10.1016/j.apmr.2010.01.015204346082864942)
Kraus VB, Hargrove DE, Hunter DJ et al (2017) Establishment of reference intervals for osteoarthritis-related soluble biomarkers: the FNIH/OARSI OA Biomarkers Consortium. Ann Rheum Dis 76:179–185. https://doi.org/10.1136/annrheumdis-2016-209253. (PMID: 10.1136/annrheumdis-2016-20925327343253)
Driban JB, Harkey MS, Barbe MF et al (2020) Risk factors and the natural history of accelerated knee osteoarthritis: a narrative review. BMC Musculoskelet Disord 21:332. https://doi.org/10.1186/s12891-020-03367-2. (PMID: 10.1186/s12891-020-03367-2324714127260785)
Bastick AN, Runhaar J, Belo JN, Bierma-Zeinstra SMA (2015) Prognostic factors for progression of clinical osteoarthritis of the knee: a systematic review of observational studies. Arthritis Res Ther 17:152. https://doi.org/10.1186/s13075-015-0670-x. (PMID: 10.1186/s13075-015-0670-x260507404483213)
Kretzschmar M, Lin W, Nardo L et al (2015) Association of physical activity measured by accelerometer, knee joint abnormalities, and cartilage T2 measurements obtained from 3T magnetic resonance imaging: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 67:1272–1280. https://doi.org/10.1002/acr.22586. (PMID: 10.1002/acr.2258625777255)
Hovis KK, Stehling C, Souza RB et al (2011) Physical activity is associated with magnetic resonance imaging–based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63:2248–2256. https://doi.org/10.1002/art.30419. (PMID: 10.1002/art.30419215383283149726)
Lin W, Alizai H, Joseph GB et al (2013) Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:1558–1566. https://doi.org/10.1016/j.joca.2013.06.022. (PMID: 10.1016/j.joca.2013.06.022)
Schirò S, Foreman SC, Joseph GB et al (2021) Impact of different physical activity types on knee joint structural degeneration assessed with 3-T MRI in overweight and obese subjects: data from the osteoarthritis initiative. Skeletal Radiol 50:1427–1440. https://doi.org/10.1007/s00256-020-03642-2. (PMID: 10.1007/s00256-020-03642-2334046708122031)
Munukka M, Waller B, Häkkinen A et al (2017) Physical activity is related with cartilage quality in women with knee osteoarthritis. Med Sci Sport Exerc 49:1323–1330. https://doi.org/10.1249/MSS.0000000000001238. (PMID: 10.1249/MSS.0000000000001238)
Terpstra SES, van der Velde JHPM, de Mutsert R et al (2021) The association of clinical and structural knee osteoarthritis with physical activity in the middle-aged population: the NEO study. Osteoarthr Cartil 29:1507–1514. https://doi.org/10.1016/j.joca.2021.07.008. (PMID: 10.1016/j.joca.2021.07.008)
Xu D, Van Middelkoop M, Bierma-Zeinstra SMA, Runhaar J (2023) Physical activity and features of knee osteoarthritis on magnetic resonance imaging in individuals without osteoarthritis: a systematic review. Arthritis Care Res (Hoboken) 75:1908–1913. https://doi.org/10.1002/acr.25083. (PMID: 10.1002/acr.2508336576386)
Lisee C, Spang JT, Loeser R et al (2021) Tibiofemoral articular cartilage composition differs based on serum biochemical profiles following anterior cruciate ligament reconstruction. Osteoarthr Cartil 29:1732–1740. https://doi.org/10.1016/j.joca.2021.09.005. (PMID: 10.1016/j.joca.2021.09.005)
Collins JE, Katz JN, Dervan EE, Losina E (2014) Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil 22:622–630. https://doi.org/10.1016/j.joca.2014.03.009. (PMID: 10.1016/j.joca.2014.03.009)
Singh A, Venn A, Blizzard L et al (2022) Association between osteoarthritis-related serum biochemical markers over 11 years and knee MRI-based imaging biomarkers in middle-aged adults. Osteoarthr Cartil 30:756–764. https://doi.org/10.1016/j.joca.2022.02.616. (PMID: 10.1016/j.joca.2022.02.616)
King KB, Lindsey CT, Dunn TC et al (2004) A study of the relationship between molecular biomarkers of joint degeneration and the magnetic resonance-measured characteristics of cartilage in 16 symptomatic knees. Magn Reson Imaging 22:1117–1123. https://doi.org/10.1016/j.mri.2004.08.001. (PMID: 10.1016/j.mri.2004.08.00115527998)
Previtali D, Andriolo L, Di Laura FG et al (2020) Pain trajectories in knee osteoarthritis—a systematic review and best evidence synthesis on pain predictors. J Clin Med 9:2828. https://doi.org/10.3390/jcm9092828. (PMID: 10.3390/jcm9092828328828287564930)
White DK, Neogi T, Nguyen U-SDT et al (2016) Trajectories of functional decline in knee osteoarthritis: the Osteoarthritis Initiative. Rheumatology 55:801–808. https://doi.org/10.1093/rheumatology/kev419. (PMID: 10.1093/rheumatology/kev41926705330)
Dinger MK, Oman RF, Taylor EL et al (2004) Stability and convergent validity of the Physical Activity Scale for the Elderly (PASE). J Sports Med Phys Fitness 44:186–192. (PMID: 15470317)
Kraus VB, Burnett B, Coindreau J et al (2011) Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthr Cartil 19:515–542. https://doi.org/10.1016/j.joca.2010.08.019. (PMID: 10.1016/j.joca.2010.08.019)
معلومات مُعتمدة: STAR 2019 The Arthritis Society & CIHR Institute of Musculoskeletal Health and Arthritis; 353715 Natural Sciences and Engineering Research Council of Canada
فهرسة مساهمة: Keywords: Biomechanical phenomena; Computer; Exercise; Magnetic resonance imaging; Neural networks; Obesity
المشرفين على المادة: 0 (Biomarkers)
0 (Cartilage Oligomeric Matrix Protein)
0 (Collagen Type II)
0 (COMP protein, human)
تواريخ الأحداث: Date Created: 20240524 Date Completed: 20240618 Latest Revision: 20240720
رمز التحديث: 20240720
DOI: 10.1007/s10067-024-07014-2
PMID: 38787477
قاعدة البيانات: MEDLINE
الوصف
تدمد:1434-9949
DOI:10.1007/s10067-024-07014-2