دورية أكاديمية

Tandem mass spectrometry of homologous 3-hydroxyfurazan and nitrile amino acids: Analysis of cooperative interactions and fragmentation processes.

التفاصيل البيبلوغرافية
العنوان: Tandem mass spectrometry of homologous 3-hydroxyfurazan and nitrile amino acids: Analysis of cooperative interactions and fragmentation processes.
المؤلفون: Grossert JS; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada., Crowell AMJ; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada., Boschi D; Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, Torino, Italy., Lolli ML; Dipartimento di Scienza e Tecnologia del Farmaco (DSTF), Università degli Studi di Torino, Torino, Italy., White RL; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
المصدر: Journal of mass spectrometry : JMS [J Mass Spectrom] 2024 Jun; Vol. 59 (6), pp. e5043.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 9504818 Publication Model: Print Cited Medium: Internet ISSN: 1096-9888 (Electronic) Linking ISSN: 10765174 NLM ISO Abbreviation: J Mass Spectrom Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, UK : Wiley, c1995-
مواضيع طبية MeSH: Tandem Mass Spectrometry*/methods , Nitriles*/chemistry , Amino Acids*/chemistry , Amino Acids*/analysis, Spectrometry, Mass, Electrospray Ionization/methods ; Ions/chemistry
مستخلص: The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID). The deprotonated heterocycles showed bond cleavages of the 3-hydroxyfurazan ring with formation of oxoisocyanate and the complementary deprotonated nitrile amino acid. Further fragmentation of the deprotonated nitrile amino acids was greatly dependent on the length of the alkyl nitrile side chain. Competing losses of CO 2 versus HCN occurred from α-cyanoglycinate (shortest chain), whereas water was lost from 2-amino-5-cyanopentanoate (longest chain). Interestingly, loss of acrylonitrile by a McLafferty-type fragmentation process was detected for 2-amino-4-cyanobutanoate, and several competing processes were observed for β-cyanoalanate. In one process, cyanide ion was formed either by consecutive losses of ammonia, carbon dioxide, and acetylene or by a one-step decarboxylative elimination. In another, complementary ions were obtained from β-cyanoalanate by loss of acetonitrile or HN=CHCO 2 H. Fragmentation of the protonated 3-hydroxyfurazan and nitrile amino acids resulted in the cumulative loss (H 2 O + CO), a loss that is commonly observed for protonated aliphatic α-amino acids. Overall, the distinct fragmentation behavior of the multifunctional 3-hydroxyfurazan amino acids correlated with the charged site, whereas fragmentations of the deprotonated nitrile amino acids showed cooperative interactions between the nitrile and the carboxylate groups.
(© 2024 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd.)
References: Ballatore C, Huryn DM, Smith AB III. Carboxylic acid (bio)isosteres in drug design. ChemMedChem. 2013;8(3):385‐395. doi:10.1002/cmdc.201200585.
Sainas S, Pippione AC, Boschi D, Lolli ML. Hydroxyazoles as acid isosteres and their drug design applications—part 1: monocyclic systems. Adv Heterocycl Chem. 2021;134:185‐272. doi:10.1016/bs.aihch.2020.12.001.
Horgan C, O'Sullivan TP. Recent developments in the practical application of novel carboxylic acid bioisosteres. Curr Med Chem. 2022;29(13):2203‐2234. doi:10.2174/0929867328666210820112126.
Bräuner‐Osborne H, Sløk FA, Skjærbæk N, et al. A new highly selective metabotropic excitatory amino acid agonist: 2‐Amino‐4‐(3‐hydroxy‐5‐methylisoxazol‐4‐yl)butyric acid. J Med Chem. 1996;39(16):3188‐3194. doi:10.1021/jm9602569.
Frydenvang K, Pickering DS, Greenwood JR, et al. Biostructural and pharmacological studies of bicyclic analogues of the 3‐isoxazolol glutamate receptor agonist ibotenic acid. J Med Chem. 2010;53(23):8354‐8361. doi:10.1021/jm101218a.
Wang S‐Y, Larsen Y, Navarrete CV, et al. Tweaking subtype selectivity and agonist efficacy at (S)‐2‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propionic acid (AMPA) receptors in a small series of BnTetAMPA analogues. J Med Chem. 2016;59(5):2244‐2254. doi:10.1021/acs.jmedchem.5b01982.
Lolli ML, Giordano C, Pickering DS, et al. 4‐Hydroxy‐1,2,5‐oxadiazol‐3‐yl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and molecular pharmacological characterization at ionotropic glutamate receptors of compounds related to glutamate and its homologues. J Med Chem. 2010;53(10):4110‐4118. doi:10.1021/jm1001452.
Grossert JS, Pippione AC, Boschi D, Lolli ML, White RL. Heterocyclic ring cleavage upon collision‐induced dissociation of deprotonated 3‐hydroxy‐1,2,5‐oxadiazoles (3‐hydroxyfurazans). J Mass Spectrom. 2015;50(12):1433‐1437. doi:10.1002/jms.3724.
Grossert JS, Boschi D, Lolli ML, White RL. Fragmentation pathways arising from protonation at different sites in aminoalkyl‐substituted 3‐hydroxy‐1,2,5‐oxadiazoles (3‐hydroxyfurazans). Rapid Commun Mass Spectrom. 2018;32(16):1403‐1413. doi:10.1002/rcm.8166.
Armentrout PB. Energetics and mechanisms for decomposition of cationized amino acids and peptides explored using guided ion beam tandem mass spectrometry. Mass Spectrom Rev. 2023;42(3):928‐953. doi:10.1002/mas.21723.
Mamani‐Huanca M, Gradillas A, de la Fuente AG, López‐Gonzálvez Á, Barbas C. Unveiling the fragmentation mechanisms of modified amino acids as the key for their targeted identification. Anal Chem. 2020;92(7):4848‐4857. doi:10.1021/acs.analchem.9b04313.
Zhang P, Chan W, Ang IL, et al. Revisiting fragmentation reactions of protonated α‐amino acids by high‐resolution electrospray ionization tandem mass spectrometry with collision‐induced dissociation. Sci Rep. 2019;9(1):6453. doi:10.1038/s41598‐019‐42777‐8.
Chary VN, Reddy BS, Kumar CD, Srinivas R, Prabhakar S. Characterization of N,N‐dimethyl amino acids by electrospray ionization–tandem mass spectrometry. J Mass Spectrom. 2015;50(12):771‐781. doi:10.1002/jms.3588.
Piraud M, Vianey‐Saban C, Petritis K, et al. ESI‐MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun Mass Spectrom. 2003;17(12):1297‐1311. doi:10.1002/rcm.1054.
Rogalewicz F, Hoppilliard Y, Ohanessian G. Fragmentation mechanisms of α‐amino acids protonated under electrospray ionization: a collisional activation and ab initio theoretical study. Int J Mass Spectrom. 2000;195/196:565‐590. doi:10.1016/S1387‐3806(99)00225‐0.
Greene LE, Grossert JS, White RL. Correlations of ion structure with multiple fragmentation pathways arising from collision‐induced dissociations of selected α‐hydroxycarboxylic acid anions. J Mass Spectrom. 2013;48(3):312‐320. doi:10.1002/jms.3158.
Bialecki JB, Axe FU, Attygalle AB. Hydroxycarbonyl anion (m/z 45), a diagnostic marker for α‐hydroxy carboxylic acids. J Mass Spectrom. 2009;44(2):252‐259. doi:10.1002/jms.1504.
Kulik W, Heerma W. A study of the positive and negative ion fast atom bombardment mass spectra of α‐amino acids. Biomed Environ Mass Spectrom. 1988;15(8):419‐427. doi:10.1002/bms.1200150803.
Eckersley M, Bowie JH, Hayes RN. Collision‐induced dissociations of deprotonated α‐amino acids. The occurrence of specific proton transfers preceding fragmentation. Int J Mass Spectrom Ion Processes. 1989;93(2):199‐213. doi:10.1016/0168‐1176(89)80097‐7.
Bowie JH. The fragmentations of even‐electron organic negative ions. Mass Spectrom Rev. 1990;9(3):349‐379. doi:10.1002/mas.1280090305.
Dookeran NN, Yalcin T, Harrison AG. Fragmentation reactions of protonated α‐amino acids. J Mass Spectrom. 1996;31(5):500‐508. doi:10.1002/(SICI)1096‐9888(199605)31:5<500::AID‐JMS327>3.0.CO;2‐Q.
Beranová Š, Cai J, Wesdemiotis C. Unimolecular chemistry of protonated glycine and its neutralized form in the gas phase. J Am Chem Soc. 1995;117(37):9492‐9501. doi:10.1021/ja00142a016.
Tsang CW, Harrison AG. Chemical ionization of amino acids. J Am Chem Soc. 1976;98(6):1301‐1308. doi:10.1021/ja00422a001.
Weinkam RJ. Reactions of protonated diamino acids in the gas phase. J Org Chem. 1978;43(13):2581‐2586. doi:10.1021/jo00407a007.
Grossert JS, Boschi D, Lolli ML, White RL. Intramolecular interactions and the neutral loss of ammonia from collisionally activated, protonated ω‐aminoalkyl‐3‐hydroxyfurazans. Eur J Mass Spectrom. 2024;30(1):38‐46. doi:10.1177/14690667231214672.
Choi S‐S, Kim O‐B. Fragmentation of deprotonated amino acids in atmospheric pressure chemical ionization. Int J Mass Spectrom. 2013;338:17‐22. doi:10.1016/j.ijms.2013.01.006.
Saint Hilaire PB, Warnet A, Gimbert Y, et al. Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: role of conformation. J Chromatogr B. 2017;1047:64‐74. doi:10.1016/j.jchromb.2016.08.036.
Grossert JS, Cook MC, White RL. The influence of structural features on facile McLafferty‐type, even‐electron rearrangements in tandem mass spectra of carboxylate anions. Rapid Commun Mass Spectrom. 2006;20(10):1511‐1516. doi:10.1002/rcm.2506.
Grossert JS, White RL. Fragmentation reactions of protonated α,ω‐diamino carboxylic acids: the importance of functional group interactions. J Mass Spectrom. 2021;56(7):e4770. doi:10.1002/jms.4770.
Heaton AL, Armentrout PB. Thermodynamics and mechanism of protonated asparagine decomposition. J Am Soc Mass Spectrom. 2009;20(5):852‐866. doi:10.1016/j.jasms.2008.12.027.
Grossert JS, Fancy PD, White RL. Fragmentation pathways of negative ions produced by electrospray ionization of acyclic dicarboxylic acids and derivatives. Can J Chem. 2005;83(11):1878‐1890. doi:10.1139/V05‐214.
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision C.01. Gaussian, Inc.; 2010.
Chai J‐D, Head‐Gordon M. Long‐range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615‐6620. doi:10.1039/b810189b.
Niessen WMA. Fragmentation of toxicologically relevant drugs in negative‐ion liquid chromatography–tandem mass spectrometry. Mass Spectrom Rev. 2012;31(6):626‐665. doi:10.1002/mas.20359.
Waugh RJ, Eichinger PCH, O'Hair RAJ, Sheldon JC, Bowie JH, Hayes RN. The oxyisocyanate [ONCO]− and amidoisocyanate [HNNCO]− negative ions. Rapid Commun Mass Spectrom. 1989;3(5):151‐152. doi:10.1002/rcm.1290030509.
Bonacci G, Asciutto EK, Woodcock SR, Salvatore SR, Freeman BA, Schopfer FJ. Gas‐phase fragmentation analysis of nitro‐fatty acids. J Am Soc Mass Spectrom. 2011;22(9):1534‐1551. doi:10.1007/s13361‐011‐0185‐x.
Poppinger D, Radom L. A theoretical study of substituted CHNO isomers. J Am Chem Soc. 1978;100(12):3674‐3685. doi:10.1021/ja00480a004.
Rey P, Rossi J‐C, Taillades J, Gros G, Nore O. Hydrolysis of nitriles using an immobilized nitrilase: applications to the synthesis of methionine hydroxy analogue derivatives. J Agric Food Chem. 2004;52(26):8155‐8162. doi:10.1021/jf048827q.
LeBlanc LM, Powers Sean W, Grossert JS, White RL. Competing fragmentation processes of β‐substituted propanoate ions upon collision‐induced dissociation. Rapid Commun Mass Spectrom. 2016;30(19):2133‐2144. doi:10.1002/rcm.7699.
Tovstiga TE, Gillis EAL, Grossert JS, White RL. Characterization of multiple fragmentation pathways initiated by collision‐induced dissociation of multifunctional anions formed by deprotonation of 2‐nitrobenzenesulfonylglycine. J Mass Spectrom. 2014;49(2):168‐177. doi:10.1002/jms.3324.
Stringer MB, Bowie JH, Eichinger PCH, Currie GJ. Collision‐induced dissociations of carboxylate negative ions from 2‐ethylbutanoic, 2‐methylpropanoic, and pivalic acids. An isotopic labelling study. J Chem Soc Perkin Trans 2. 1987;(3):385‐390. doi:10.1039/P29870000385.
O'Hair RAJ, Gronert S, DePuy CH, Bowie JH. Gas‐phase ion chemistry of the acetic acid enolate anion [CH2CO2H]−. J Am Chem Soc. 1989;111(8):3105‐3106. doi:10.1021/ja00190a077.
Graul ST, Squires RR. Gas‐phase reactions of the methyl anion. J Am Chem Soc. 1989;111(3):892‐899. doi:10.1021/ja00185a016.
Jensen NJ, Haas GW, Gros ML. Ion‐neutral complex intermediate for loss of water from fatty acid carboxylates. Org Mass Spectrom. 1992;27(4):423‐427. doi:10.1002/oms.1210270412.
Armentrout PB, Heaton AL, Ye SJ. Thermodynamics and mechanisms for decomposition of protonated glycine and its protonated dimer. J Phys Chem A. 2011;115(41):11144‐11155. doi:10.1021/jp2025939.
O'Hair RAJ, Broughton PS, Styles ML, Frink BT, Hadad CM. The fragmentation pathways of protonated glycine: a computational study. J Am Soc Mass Spectrom. 2000;11(8):687‐696. doi:10.1016/S1044‐0305(00)00143‐4.
Rogalewicz F, Hoppilliard Y. Low energy fragmentation of protonated glycine. An ab initio theoretical study. Int J Mass Spectrom. 2000;199(1–3):235‐252. doi:10.1016/S1387‐3806(00)00189‐5.
معلومات مُعتمدة: LOLM_S1921_EX-POST_21_01 University of Turin; RGPIN/04536-2014 Natural Sciences and Engineering Research Council of Canada
فهرسة مساهمة: Keywords: 3‐hydroxyfurazan; DFT computations; ESI‐MS/MS; amino acids; collisional activation; fragmentation mechanisms; heterocycles; multifunctional ions
المشرفين على المادة: 0 (Nitriles)
0 (Amino Acids)
0 (Ions)
تواريخ الأحداث: Date Created: 20240524 Date Completed: 20240524 Latest Revision: 20240524
رمز التحديث: 20240525
DOI: 10.1002/jms.5043
PMID: 38789127
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9888
DOI:10.1002/jms.5043