دورية أكاديمية

Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space.

التفاصيل البيبلوغرافية
العنوان: Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space.
المؤلفون: Nastasi N; Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA.; Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA.; Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA., Haines SR; Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada., Bope A; Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA.; Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA.; Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA., Meyer ME; NASA Glenn Research Center, Cleveland, OH, 44135, USA., Horack JM; Department of Mechanical and Aerospace Engineering, College of Engineering and John Glenn College of Public Affairs, Ohio State University, Columbus, OH, 43210, USA., Dannemiller KC; Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA. Dannemiller.70@osu.edu.; Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA. Dannemiller.70@osu.edu.; Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA. Dannemiller.70@osu.edu.
المصدر: Scientific reports [Sci Rep] 2024 May 24; Vol. 14 (1), pp. 11858. Date of Electronic Publication: 2024 May 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Dust*/analysis , Fungi*/isolation & purification , Fungi*/classification , Microbiota* , Spacecraft* , Air Pollution, Indoor*/analysis, Humans ; Built Environment ; Bacteria/classification ; Bacteria/isolation & purification ; Bacteria/genetics ; Air Microbiology ; Earth, Planet ; Humidity
مستخلص: Human occupied built environments are no longer confined to Earth. In fact, there have been humans living and working in low-Earth orbit on the International Space Station (ISS) since November 2000. With NASA's Artemis missions and the age of commercial space stations set to begin, more human-occupied spacecraft than ever will be in Earth's orbit and beyond. On Earth and in the ISS, microbes, especially fungi, can be found in dust and grow when unexpected, elevated moisture conditions occur. However, we do not yet know how indoor microbiomes in Earth-based homes and in the ISS differ due to their unique set of environmental conditions. Here we show that bacterial and fungal communities are different in dust collected from vacuum bags on Earth and the ISS, with Earth-based homes being more diverse (465 fungal OTUs and 237 bacterial ASVs) compared to the ISS (102 fungal OTUs and 102 bacterial ASVs). When dust from these locations were exposed to varying equilibrium relative humidity conditions (ERH), there were also significant fungal community composition changes as ERH and time elevated increased (Bray Curtis: R 2  = 0.35, P = 0.001). These findings can inform future spacecraft design to promote healthy indoor microbiomes that support crew health, spacecraft integrity, and planetary protection.
(© 2024. The Author(s).)
References: Sheetz M. Bank of America expects the space industry to triple to a $1.4 trillion market within a decade. 4 Oct 2020 [cited 22 Jan 2023]. https://www.cnbc.com/2020/10/02/why-the-space-industry-may-triple-to-1point4-trillion-by-2030.html .
National Aeronautics and Space Administration. Artemis Plan NASA’s Lunar Exploration Program Overview. NASA; 2020 Sep. https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf .
NASA. Commercial Destinations in Low-Earth Orbit (LEO). 12 May 2022 [cited 22 Jan 2023]. https://www.nasa.gov/leo-economy/commercial-destinations-in-low-earth-orbit .
Lang, J. M. et al. A microbial survey of the International Space Station (ISS). PeerJ 5, e4029 (2017). (PMID: 29492330582767110.7717/peerj.4029)
Avila-Herrera, A. et al. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 15, e0231838 (2020). (PMID: 32348348719011110.1371/journal.pone.0231838)
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007). (PMID: 17943116370943910.1038/nature06244)
Khodadad, C. L. M. et al. Microbiological and nutritional analysis of lettuce crops grown on the international space station. Front. Plant Sci. 11, 199 (2020). (PMID: 32210992706797910.3389/fpls.2020.00199)
Rintala, H., Pitkäranta, M. & Täubel, M. Chapter 4—Microbial communities associated with house dust. In Advances in Applied Microbiology (eds Laskin, A. I. et al.) 75–120 (Academic Press, 2012).
Venkateswaran, K. et al. International Space Station environmental microbiome—microbial inventories of ISS filter debris. Appl. Microbiol Biotechnol. 98, 6453–6466 (2014). (PMID: 2469582610.1007/s00253-014-5650-6)
Dannemiller, K. C., Weschler, C. J. & Peccia, J. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air 27, 354–363 (2017). (PMID: 2727264510.1111/ina.12313)
Nastasi, N. et al. Morphology and quantification of fungal growth in residential dust and carpets. Build. Environ. 174, 106774. https://doi.org/10.1016/j.buildenv.2020.106774 (2020). (PMID: 10.1016/j.buildenv.2020.106774)
Mora, M. et al. Microorganisms in confined habitats: Microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station. Front. Microbiol. 7, 1573 (2016). (PMID: 27790191506173610.3389/fmicb.2016.01573)
Checinska, A. et al. Microbiomes of the dust particles collected from the international space station and spacecraft assembly facilities. Microbiome 3, 50 (2015). (PMID: 26502721462418410.1186/s40168-015-0116-3)
Dannemiller, K. C. Moving towards a robust definition for a “healthy” indoor microbiome. mSystems 4, e00074-19 (2019). (PMID: 31120023652954110.1128/mSystems.00074-19)
Chawla, H. et al. A comprehensive review of microbial contamination in the indoor environment: Sources, sampling, health risks, and mitigation strategies. Front. Public Health 11, 1285393 (2023). (PMID: 380747091070144710.3389/fpubh.2023.1285393)
National Aeronautics and Space Agency (NASA). NASA Space Flight Human-System Standard Volume 2: Human Factors, Habitability, and Environmental Health. NASA; 2022 Apr. Report No.: NASA-STD-3001. https://www.nasa.gov/wp-content/uploads/2020/10/2022-04-08_nasa-std-3001_vol_2_rev_c_final.pdf .
Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 9, 383–391 (2016). (PMID: 27843335509874710.2147/IJGM.S114188)
Schuerger, A. C. et al. Fusarium oxysporum as an opportunistic fungal pathogen on zinnia hybrida plants grown on board the international space station. Astrobiology 21, 1029–1048 (2021). (PMID: 3392620510.1089/ast.2020.2399)
Nastasi N, Bope A, Meyer ME, Horack JM, Dannemiller KC. Predicting how moisture impacts microbes in dust from spacecraft. Submitted.
Haines, S. R., Siegel, J. A. & Dannemiller, K. C. Modeling microbial growth in carpet dust exposed to diurnal variations in relative humidity using the “Time-of-Wetness” framework. Indoor Air 30, 978–992 (2020). (PMID: 32403157749683110.1111/ina.12686)
Huang, B., Li, D.-G., Huang, Y. & Liu, C.-T. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil. Med. Res. 5, 18 (2018). (PMID: 298075385971428)
Casero, D. et al. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome https://doi.org/10.1186/s40168-017-0325-z (2017). (PMID: 10.1186/s40168-017-0325-z288213015563039)
Wolf, J., O’Neill, N. R., Rogers, C. A., Muilenberg, M. L. & Ziska, L. H. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environ. Health Perspect. 118, 1223–1228 (2010). (PMID: 20462828294408110.1289/ehp.0901867)
Sena, A. P. A. et al. Increased enzymatic activity in rice leaf blast suppression by crude extract of Epicoccum sp. Trop. Plant Pathol. 38, 387–397 (2013). (PMID: 10.1590/S1982-56762013005000028)
Hospodsky, D. et al. Human occupancy as a source of indoor airborne bacteria. PLoS One 7, e34867 (2012). (PMID: 22529946332954810.1371/journal.pone.0034867)
Kates, A. E. et al. Household pet ownership and the microbial diversity of the human gut microbiota. Front. Cell. Infect. Microbiol. 10, 73 (2020). (PMID: 32185142705897810.3389/fcimb.2020.00073)
Kembel, S. W. et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 6, 1469–1479 (2012). (PMID: 22278670340040710.1038/ismej.2011.211)
Leung, M. H. Y. & Lee, P. K. H. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: A review. Microbiome 4, 21 (2016). (PMID: 27216717487793310.1186/s40168-016-0165-2)
Dannemiller, K. C., Lang-Yona, N., Yamamoto, N., Rudich, Y. & Peccia, J. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos. Environ. 84, 113–121 (2014). (PMID: 10.1016/j.atmosenv.2013.11.036)
Herrera, M. L., Vallor, A. C., Gelfond, J. A., Patterson, T. F. & Wickes, B. L. Strain-dependent variation in 18S ribosomal DNA Copy numbers in Aspergillus fumigatus. J. Clin. Microbiol. 47, 1325–1332 (2009). (PMID: 19261786268183110.1128/JCM.02073-08)
Gu, J. D., Roman, M., Esselman, T. & Mitchell, R. The role of microbial biofilms in deterioration of space station candidate materials. Int. Biodeterior. Biodegrad. 41, 25–33 (1998). (PMID: 10.1016/S0964-8305(97)00070-X)
National Aeronautics and Space Administration. Implementing Planetary Protection Requirements for Space Fight. NASA. Report No.: NASA-STD-871927 (2022).
Adan, O. C. G. & Samson, R. A. Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living (Wageningen Academic Publishers, 2011). (PMID: 10.3920/978-90-8686-722-6)
Hospodsky, D., Yamamoto, N. & Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl. Environ. Microbiol. 76, 7004–7012 (2010). (PMID: 20817798297625310.1128/AEM.01240-10)
Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U. S. A. 109, 6241–6246 (2012). (PMID: 22454494334106810.1073/pnas.1117018109)
Zhou, G., Whong, W. Z., Ong, T. & Chen, B. Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Mol. Cell. Probes 14, 339–348 (2000). (PMID: 1109026310.1006/mcpr.2000.0324)
Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W. & Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22, 339–351 (2012). (PMID: 22257156343748810.1111/j.1600-0668.2012.00769.x)
Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002). (PMID: 1178251810.1099/00221287-148-1-257)
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). (PMID: 20383131315657310.1038/nmeth.f.303)
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011). (PMID: 10.14806/ej.17.1.200)
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 4, e2584 (2016). (PMID: 27781170507569710.7717/peerj.2584)
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013). (PMID: 2320243510.1038/nmeth.2276)
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018). (PMID: 29773078595684310.1186/s40168-018-0470-z)
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019). (PMID: 3037182010.1093/nar/gky1022)
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2)
Dannemiller, K. C., Reeves, D., Bibby, K., Yamamoto, N. & Peccia, J. Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). J. Basic Microbiol. 54, 315–321 (2014). (PMID: 2376539210.1002/jobm.201200507)
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012). (PMID: 2213464610.1038/ismej.2011.139)
Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014). (PMID: 24883433404886110.1111/ina.12072)
Cochran, S. J. et al. Spring is associated with increased total and allergenic fungal concentrations in house dust from a pediatric asthma cohort in New York City. Build. Environ. 226, 109711. https://doi.org/10.1016/j.buildenv.2022.109711 (2022). (PMID: 10.1016/j.buildenv.2022.109711)
معلومات مُعتمدة: Grant #80NSSC19K0429 NASA Space Biology
المشرفين على المادة: 0 (Dust)
تواريخ الأحداث: Date Created: 20240524 Date Completed: 20240524 Latest Revision: 20240529
رمز التحديث: 20240529
مُعرف محوري في PubMed: PMC11126634
DOI: 10.1038/s41598-024-62191-z
PMID: 38789478
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-62191-z