دورية أكاديمية

Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses.

التفاصيل البيبلوغرافية
العنوان: Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses.
المؤلفون: Bastos-Soares EA; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil.; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., da Silva Morais MS; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil.; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., Funes-Huacca M; Departamento de Química, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., Sousa RMO; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil., Brilhante-Da-Silva N; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil., Roberto SA; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil.; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., Prado NDR; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil., Dos Santos CND; Instituto Carlos Chagas, FIOCRUZ, Fiocruz Paraná, Curitiba, PR, Brazil., Marinho ACM; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil., Soares AM; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil.; Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil.; Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, RO, Brazil.; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., Stabeli RG; Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional, Ribeirão Preto, SP, Brazil., Pereira SDS; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil.; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil., Fernandes CFC; Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil. carlaceledonio@fiocruz.br.
المصدر: Molecular diagnosis & therapy [Mol Diagn Ther] 2024 Jul; Vol. 28 (4), pp. 479-494. Date of Electronic Publication: 2024 May 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Adis, Springer International Country of Publication: New Zealand NLM ID: 101264260 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-2000 (Electronic) Linking ISSN: 11771062 NLM ISO Abbreviation: Mol Diagn Ther Subsets: MEDLINE
أسماء مطبوعة: Publication: Auckland : Adis, Springer International
Original Publication: Auckland, N.Z. : Adis International, c2006-
مواضيع طبية MeSH: Gold*/chemistry , Metal Nanoparticles*/chemistry , Single-Domain Antibodies*/immunology , Single-Domain Antibodies*/chemistry , Orthohantavirus*/immunology , Biosensing Techniques*/methods, Humans ; Antibodies, Viral/immunology ; Animals ; Hantavirus Infections/diagnosis
مستخلص: Introduction: Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection.
Methods: Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ 85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs.
Results: The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 μg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆ 85 ).
Discussion: Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ 85 at concentrations up to 25 ng/μL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Bever CS, Dong J-X, Vasylieva N, Barnych B, Cui Y, Xu Z-L, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem. 2016;408:5985–6002. https://doi.org/10.1007/s00216-016-9585-x . (PMID: 10.1007/s00216-016-9585-x272095914983233)
Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34:11–26. https://doi.org/10.1007/s40259-019-00392-z . (PMID: 10.1007/s40259-019-00392-z31686399)
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–8. https://doi.org/10.1038/363446a0 . (PMID: 10.1038/363446a08502296)
Conrath K, Wernery U, Muyldermans S, Nguyen V. Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev Comp Immunol. 2003;27:87–103. https://doi.org/10.1016/S0145-305X(02)00071-X . (PMID: 10.1016/S0145-305X(02)00071-X12543123)
Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, et al. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis. Jin X, editor. PLoS ONE. 2014;9: e95263. https://doi.org/10.1371/journal.pone.0095263 . (PMID: 10.1371/journal.pone.0095263247517153994031)
Fernandes CFC, Pereira SS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid single-domain antibodies as an alternative to overcome challenges related to the prevention, detection, and control of neglected tropical diseases. Front Immunol. 2017. https://doi.org/10.3389/fimmu.2017.00653 . (PMID: 10.3389/fimmu.2017.00653286703185472682)
Wang K, Liu Z, Ji P, Liu J, Eremin SA, Li QX, et al. A camelid VHH-based fluorescence polarization immunoassay for the detection of tetrabromobisphenol A in water. Anal Methods. 2016;8:7265–71. https://doi.org/10.1039/C6AY01603K . (PMID: 10.1039/C6AY01603K)
De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014;32:263–70. https://doi.org/10.1016/j.tibtech.2014.03.001 . (PMID: 10.1016/j.tibtech.2014.03.00124698358)
Klooster R, Maassen BTH, Stam JC, Hermans PW, ten Haaft MR, Detmers FJM, et al. Improved anti-IgG and HSA affinity ligands: clinical application of VHH antibody technology. J Immunol Methods. 2007;324:1–12. https://doi.org/10.1016/j.jim.2007.04.005 . (PMID: 10.1016/j.jim.2007.04.00517570391)
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, et al. Camelid single-domain antibodies for the development of potent diagnosis platforms. Mol Diagn Ther. 2021;25(4):439–56. https://doi.org/10.1007/s40291-021-00533-7 . (PMID: 10.1007/s40291-021-00533-734146333)
Park W, Shin H, Choi B, Rhim WK, Na K, Han DK. Advanced hybrid nanomaterials for biomedical applications. Prog Mater Sci. 2020;114: 100686. https://doi.org/10.1016/j.pmatsci.2020.100686 . (PMID: 10.1016/j.pmatsci.2020.100686)
Soto D, Orozco J. Hybrid nanobioengineered nanomaterial-based electrochemical Biosensors. Molecules. 2022;27(12):3841. https://doi.org/10.3390/molecules27123841 . (Published 2022 Jun 15). (PMID: 10.3390/molecules27123841357449679229873)
Huynh KH, Pham XH, Kim J, et al. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci. 2020;21(14):5174. https://doi.org/10.3390/ijms21145174 . (Published 2020 Jul 21). (PMID: 10.3390/ijms21145174327083517404399)
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8:990. https://doi.org/10.3389/fbioe.2020.00990 . (Published 2020 Aug 13). (PMID: 10.3389/fbioe.2020.00990329035627438450)
Tang S, Hewlett I. Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. J Infect Dis. 2010;201:S59–64. https://doi.org/10.1086/650386 . (PMID: 10.1086/65038620225948)
Ardekani LS, Thulstrup PW. Gold nanoparticle-mediated lateral flow assays for detection of host antibodies and COVID-19 proteins. Nanomaterials (Basel). 2022;12(9):1456. https://doi.org/10.3390/nano12091456 . (Published 2022 Apr 25). (PMID: 10.3390/nano1209145635564165)
Pereira FC, Zanoni MVB, Moretto LM, Ugo P. Optical and morphological characteristics of gold nanostructures. Quim Nova. 2007;30:1550–1554. https://doi.org/10.1590/S0100-40422007000700010.
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22(9):1445. https://doi.org/10.3390/molecules22091445 . (Published 2017 Aug 31). (PMID: 10.3390/molecules22091445288582536151763)
Aminabad ED, et al. Sensitive immunosensing of α-synuclein protein in human plasma samples using gold nanoparticles conjugated with graphene: an innovative immuno-platform towards early stage identification of Parkinson’s disease using point of care (POC) analysis. RSC Adv. 2022;12(7):4346–57. https://doi.org/10.1039/d1ra06437a . (PMID: 10.1039/d1ra06437a354254378980998)
Raboni SM, Levis S, Rosa ES, et al. Hantavirus infection in Brazil: development and evaluation of an enzyme immunoassay and immunoblotting based on N recombinant protein. Diagn Microbiol Infect Dis. 2007;58(1):89–97. https://doi.org/10.1016/j.diagmicrobio.2006.11.012 . (PMID: 10.1016/j.diagmicrobio.2006.11.01217383845)
Yoshimatsu K, Arikawa J. Serological diagnosis with recombinant N antigen for hantavirus infection. Virus Res. 2014;187:77–83. https://doi.org/10.1016/j.virusres.2013.12.040 . (PMID: 10.1016/j.virusres.2013.12.04024487183)
Pereira SS, Moreira-Dill LS, Morais MSS, Prado NDR, Barros ML, Koishi AC, et al. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of hantavirus pulmonary syndrome. Kuhn JH, editor. PLoS ONE. 2014;9: e108067. https://doi.org/10.1371/journal.pone.0108067 . (PMID: 10.1371/journal.pone.0108067252434114171512)
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. https://doi.org/10.1038/227680a0 . (PMID: 10.1038/227680a05432063)
Andersson K, Hämäläinen M, Malmqvist M. Identification and optimization of regeneration conditions for affinity-based biosensor assays. A multivariate cocktail approach. Anal Chem. 1999;71(13):2475–81. https://doi.org/10.1021/ac981271j . (PMID: 10.1021/ac981271j10405611)
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55. https://doi.org/10.1039/df9511100055 . (PMID: 10.1039/df9511100055)
Pham VD, Hoang H, Phan TH, Conrad U, Chu HH. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development. Adv Nat Sci Nanosci Nanotechnol. 2012;3: 045017. https://doi.org/10.1088/2043-6262/3/4/045017 . (PMID: 10.1088/2043-6262/3/4/045017)
Oliveira UD, Santos FLN, Galvão-Castro B, Krieger MA, Zanchin NIT. Novel genetic constructs for production of recombinant HTLV-1/2 antigens and evaluation of their reactivity to plasma samples from HTLV-1 infected patients. J Clin Microbiol. 2021;59(4):e02701–20. https://doi.org/10.1128/JCM.02701-20 . (Published 2021 Mar 19). (PMID: 10.1128/JCM.02701-20335045928092729)
Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal Chem. 2007;79:4215–21. https://doi.org/10.1021/ac0702084 . (PMID: 10.1021/ac070208417458937)
Tanaka R, Yuhi T, Nagatani N, Endo T, Kerman K, Takamura Y, et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem. 2006;385:1414–20. https://doi.org/10.1007/s00216-006-0549-4 . (PMID: 10.1007/s00216-006-0549-416838160)
Aria H, Mahmoodi F, Ghaheh HS, et al. Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: a systematic review. Anal Biochem. 2022;640: 114546. https://doi.org/10.1016/j.ab.2022.114546 . (PMID: 10.1016/j.ab.2022.114546349956168730734)
Padula PJ, Rossi CM, Valle MOD, et al. Development and evaluation of a solid-phase enzyme immunoassay based on Andes hantavirus recombinant nucleoprotein. J Med Microbiol. 2000;49(2):149–55. https://doi.org/10.1099/0022-1317-49-2-149 . (PMID: 10.1099/0022-1317-49-2-14910670565)
Prado NDR, Pereira SS, da Silva MP, Morais MSS, Kayano AM, Moreira-Dill LS, et al. Inhibition of the myotoxicity induced by Bothrops jararacussu venom and isolated phospholipases A2 by specific camelid single-domain antibody fragments. Lomonte B, editor. PLoS ONE. 2016;11: e0151363. https://doi.org/10.1371/journal.pone.0151363 . (PMID: 10.1371/journal.pone.0151363270288724814101)
Morais MSS. Caracterização de nanocorpos de camelídeos ativos contra Proteína N de Hantavírus. 2016. 65f. Dissertação (Mestrado em Biologia Experimental), Universidade Federal de Rondônia. Porto Velho/RO, 2016. https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=3921477.
Avižinienė A, Kučinskaitė-Kodzė I, Petraitytė-Burneikienė R, et al. Characterization of a panel of cross-reactive Hantavirus nucleocapsid protein-specific monoclonal antibodies. Viruses. 2023;15(2):532. https://doi.org/10.3390/v15020532 . (Published 2023 Feb 14). (PMID: 10.3390/v15020532368517479958643)
Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–2. https://doi.org/10.1038/physci241020a0 . (PMID: 10.1038/physci241020a0)
Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939–48. https://doi.org/10.1021/ja074447k . (PMID: 10.1021/ja074447k17948996)
El-Naggar NE, Rabei NH, Elmansy MF, et al. Artificial neural network approach for prediction of AuNPs biosynthesis by Streptomyces flavolimosus, characterization, antitumor potency in-vitro and in-vivo against Ehrlich ascites carcinoma. Sci Rep. 2023;13(1):12686. https://doi.org/10.1038/s41598-023-39177-4 . (PMID: 10.1038/s41598-023-39177-43754215410403537)
Upadhyayula VKK. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta. 2012;715:1–18. https://doi.org/10.1016/j.aca.2011.12.008 . (PMID: 10.1016/j.aca.2011.12.00822244163)
Shahjahan T, Javed B, Sharma V, Tian F. pH and NaCl optimisation to improve the stability of gold and silver nanoparticles anti-Zearalenone antibody conjugates for immunochromatographic assay. Methods Protocol. 2023;6(5):93. https://doi.org/10.3390/mps6050093 . (Published 2023 Oct 3). (PMID: 10.3390/mps6050093)
Lou S, Ye J, Li K, Wu A. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst. 2012;137:1174–81. https://doi.org/10.1039/C2AN15844B . (PMID: 10.1039/C2AN15844B22193208)
Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, et al. Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods. 2010;356:60–9. https://doi.org/10.1016/j.jim.2010.02.007 . (PMID: 10.1016/j.jim.2010.02.00720188107)
Zhao W, Brook MA, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem. 2008;9(15):2363–71. https://doi.org/10.1002/cbic.200800282 .
Blanco RD, Fidelis CF, Araujo LS, Henao AM, Cardona JA, Guimarães JD, et al. Development and standardization of Dot-ELISA using recombinant peptides for serological diagnosis of Neospora caninum. Pesqui Veterinária Bras. 2014;34:723–7. https://doi.org/10.1590/S0100-736X2014000800002 . (PMID: 10.1590/S0100-736X2014000800002)
Hayrapetyan H, Tran T, Tellez-Corrales E, Madiraju C. Enzyme-linked immunosorbent assay: types and applications. Methods Mol Biol. 2023;2612:1–17. https://doi.org/10.1007/978-1-0716-2903-1_1 . (PMID: 10.1007/978-1-0716-2903-1_136795355)
Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Alagar M. An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay. Biosens Bioelectron. 2011;26:4624–7. https://doi.org/10.1016/j.bios.2011.05.006 . (PMID: 10.1016/j.bios.2011.05.00621641786)
Ngo YH, Li D, Simon GP, Garnier G. Paper surfaces functionalized by nanoparticles. Adv Colloid Interface Sci. 2011;163:23–38. https://doi.org/10.1016/j.cis.2011.01.004 . (PMID: 10.1016/j.cis.2011.01.00421324427)
Teerinen T, Lappalainen T, Erho T. A paper-based lateral flow assay for morphine. Anal Bioanal Chem. 2014;406(24):5955–65. https://doi.org/10.1007/s00216-014-8001-7 . (PMID: 10.1007/s00216-014-8001-725023970)
Bailes J, Mayoss S, Teale P, Soloviev M. Gold nanoparticle antibody conjugates for use in competitive lateral flow assays. Methods Mol Biol. 2012;906:45–55. https://doi.org/10.1007/978-1-61779-953-2_4 . (PMID: 10.1007/978-1-61779-953-2_422791423)
المشرفين على المادة: 7440-57-5 (Gold)
0 (Single-Domain Antibodies)
0 (Antibodies, Viral)
تواريخ الأحداث: Date Created: 20240525 Date Completed: 20240627 Latest Revision: 20240627
رمز التحديث: 20240627
DOI: 10.1007/s40291-024-00713-1
PMID: 38796660
قاعدة البيانات: MEDLINE
الوصف
تدمد:1179-2000
DOI:10.1007/s40291-024-00713-1