دورية أكاديمية

Iron nanoparticles prepared from South African acid mine drainage for the treatment of methylene blue in wastewater.

التفاصيل البيبلوغرافية
العنوان: Iron nanoparticles prepared from South African acid mine drainage for the treatment of methylene blue in wastewater.
المؤلفون: Folifac L; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa. folifac2013@gmail.com., Ameh AE; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa., Broadhurst J; Minerals to Metals, Department of Chemical Engineering, University of Cape Town, Woolsack Drive, Rondebosch 7701, PO Box X3, Rondebosch 7701, Cape Town, South Africa., Petrik LF; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa., Ojumu TV; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jun; Vol. 31 (26), pp. 38310-38322. Date of Electronic Publication: 2024 May 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Metal Nanoparticles*/chemistry , Methylene Blue*/analysis , Methylene Blue*/chemistry , Water Purification*/methods , Water Pollutants, Chemical*/analysis , Water Pollutants, Chemical*/chemistry, South Africa ; Plant Extracts/chemistry ; Tea
مستخلص: In this study, three acid mine drainage (AMD) sources were investigated as potential sources of iron for the synthesis of iron nanoparticles using green tea extract (an environmentally friendly reductant) or sodium borohydride (a chemical reductant). Electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation-reduction potential (ORP), ion chromatography (IC), and inductively coupled plasma-mass spectroscopy (ICP-MS) techniques were used to characterize the AMD, and the most suitable AMD sample was selected based on availability. Additionally, three tea extracts were characterized using ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazine-hydrate (DPPH), and the most suitable environmentally friendly reductant was selected based on the highest FRAP (1152 µmol FeII/g) and DPPH (71%) values. The synthesized iron nanoparticles were characterized and compared using XRD, STEM, Image J, EDS, and FTIR analytical techniques. The study shows that the novel iron nanoparticles produced using the selected green tea (57 nm) and AMD were stable under air due to the surface modification by polyphenols contained in green tea extract, whereas the nanoparticles produced using sodium borohydride (67 nm) were unstable under air and produced a toxic supernatant. Both the AMD-based iron nanoparticles can be used as Fenton-like catalysts for the decoloration of methylene blue solution. While 99% decoloration was achieved by the borohydride-synthesized nanoparticles, 81% decoloration was achieved using green tea-synthesized nanoparticles.
(© 2024. The Author(s).)
References: Abdelfatah AM, Fawzy M, Eltaweil AS, El-Khouly ME (2021) Green synthesis of nano-zero-valent iron using ricinus communis seeds extract: characterization and application in the treatment of methylene blue-polluted water. ACS Omega 6:25397–25411. https://doi.org/10.1021/acsomega.1c03355. (PMID: 10.1021/acsomega.1c03355)
Akcil A, Koldas S (2006) Acid Mine Drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145. https://doi.org/10.1016/J.JCLEPRO.2004.09.006. (PMID: 10.1016/J.JCLEPRO.2004.09.006)
Al-Aoh HA, Mihaina IAM, Alsharif MA et al (2020) Removal of methylene blue from synthetic wastewater by the selected metallic oxides nanoparticles adsorbent: equilibrium, kinetic and thermodynamic studies. Chem Eng Commun 207:1719–1735. https://doi.org/10.1080/00986445.2019.1680366. (PMID: 10.1080/00986445.2019.1680366)
Alegbe MJ, Ayanda OS, Ndungu P et al (2019) Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. J Environ Chem Eng 7:103097. https://doi.org/10.1016/J.JECE.2019.103097. (PMID: 10.1016/J.JECE.2019.103097)
Ashokkumar R, Ramaswamy M (2014) Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian Medicinal plants | Scinapse. Int J Sel Indian Med Plants 3:395–406.
Azzam AM, El-Wakeel ST, Mostafa BB, El-Shahat MF (2016) Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J Environ Chem Eng 4:2196–2206. https://doi.org/10.1016/J.JECE.2016.03.048. (PMID: 10.1016/J.JECE.2016.03.048)
Badawi AK, Emam HE, Hamad HN, Idrus S (2022) Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polym 14:783. https://doi.org/10.3390/POLYM14040783. (PMID: 10.3390/POLYM14040783)
Badmus KO, Coetsee-Hugo E, Swart H, Petrik L (2018) Synthesis and characterisation of stable and efficient nano zero valent iron. Environ Sci Pollut Res 25:23667–23684. https://doi.org/10.1007/s11356-018-2119-7. (PMID: 10.1007/s11356-018-2119-7)
Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/ABIO.1996.0292. (PMID: 10.1006/ABIO.1996.0292)
Böke N, Kapiamba KF, Kimpiab E et al (2023) Synthesis of bimetallic FeMn nanoparticles using rooibos tea extract: characterization and application. Int J Environ Sci Technol 20:12741–12752. https://doi.org/10.1007/s13762-023-04792-1. (PMID: 10.1007/s13762-023-04792-1)
Dhanemozhi AC, Rajeswari V, Sathyajothi S (2017) Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application a. Mater Today 4(4):660–667.
Eljamal R, Eljamal O, Khalil AME et al (2018) Improvement of the chemical synthesis efficiency of nano-scale zero-valent iron particles. J Environ Chem Eng 6:4727–4735. https://doi.org/10.1016/J.JECE.2018.06.069. (PMID: 10.1016/J.JECE.2018.06.069)
Fazlzadeh M, Rahmani K, Zarei A et al (2017) A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 28:122–130. https://doi.org/10.1016/J.APT.2016.09.003. (PMID: 10.1016/J.APT.2016.09.003)
Hogsden KL, Harden JS (2012) Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Fresh\water Sci 31:108–120. https://doi.org/10.1899/11-091.1.
Holkar CR, Jadhav AJ, Pinjari DV et al (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366. https://doi.org/10.1016/J.JENVMAN.2016.07.090. (PMID: 10.1016/J.JENVMAN.2016.07.090)
Huang L, Weng X, Chen Z et al (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta Part A Mol Biomol Spectrosc 117:801–804. https://doi.org/10.1016/J.SAA.2013.09.054. (PMID: 10.1016/J.SAA.2013.09.054)
Humphries MS, Mccarthy TS, Pillay L, Humphries M (2017) Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand. South African J Sci 113:1–9. https://doi.org/10.17159/sajs.2017/20160237. (PMID: 10.17159/sajs.2017/20160237)
Jacqueline S (2013) Investigation of Iron Reduction by Green Tea Polyphenols for Application in Soil Remediation. Master’s Theses. University of Connecticut, Storrs, CT, USA.
Jaganyi D, Wheeler PJ (2003) Rooibos tea: equilibrium and extraction kinetics of aspalathin. Food Chem 83:121–126. https://doi.org/10.1016/S0308-8146(03)00065-7. (PMID: 10.1016/S0308-8146(03)00065-7)
Kalombe RM, Ojumu TV, Katambwe VN et al (2020) Treatment of acid mine drainage with coal fly ash in a jet loop reactor pilot plant. Miner Eng 159:106611. https://doi.org/10.1016/J.MINENG.2020.106611. (PMID: 10.1016/J.MINENG.2020.106611)
Kefeni KK, Msagati TAM, Mamba BB (2017) Acid mine drainage: prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493. https://doi.org/10.1016/J.JCLEPRO.2017.03.082. (PMID: 10.1016/J.JCLEPRO.2017.03.082)
Khodaie M, Ghasemi N, Moradi B, Rahimi M (2013) Removal of methylene blue from wastewater by adsorption onto ZnCl 2 activated corn husk carbon equilibrium studies. J Chem 2013:. https://doi.org/10.1155/2013/383985.
Kimpiab E, Kapiamba KF, Folifac L et al (2022) Synthesis of stabilized iron nanoparticles from acid mine drainage and rooibos tea for application as a Fenton-like catalyst. ACS Omega 7:24423–24431. https://doi.org/10.1021/ACSOMEGA.2C01846/ASSET/IMAGES/MEDIUM/AO2C01846&#95;M003.GIF. (PMID: 10.1021/ACSOMEGA.2C01846/ASSET/IMAGES/MEDIUM/AO2C01846_M003.GIF)
Kumar R, Sinha A, Lama Y et al (2016) A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Taylor Fr 46:443–466. https://doi.org/10.1080/10643389.2015.1103832. (PMID: 10.1080/10643389.2015.1103832)
Lu L, Ai Z, Li J et al (2007) Synthesis and characterization of Fe-Fe 2 O 3 core-shell nanowires and nanonecklaces. Cryst Growth Des 7:459–464. https://doi.org/10.1021/cg060633a. (PMID: 10.1021/cg060633a)
Mashkoor F, Nasar A (2020) Magsorbents: Potential candidates in wastewater treatment technology—a review on the removal of methylene blue dye. J Magn Magn Mater 500:166408. https://doi.org/10.1016/J.JMMM.2020.166408. (PMID: 10.1016/J.JMMM.2020.166408)
McCarthy TS (2011) The impact of acid mine drainage in South Africa. S Afr J Sci 107:1–7. (PMID: 10.4102/sajs.v107i5/6.712)
McCarthy TS, Humphries MS (2013) Contamination of the water supply to the town of Carolina, Mpumalanga, January 2012. S Afr J Sci 9:1–10. https://doi.org/10.1590/sajs.2013/20120112. (PMID: 10.1590/sajs.2013/20120112)
Muniyandi M, Govindaraj P, Bharath Balji G (2021) Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Mater Today Proc 47:299–311. https://doi.org/10.1016/J.MATPR.2021.04.468. (PMID: 10.1016/J.MATPR.2021.04.468)
Naidu G, Ryu S, Thiruvenkatachari R et al (2019) A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ Pollut 247:1110–1124. https://doi.org/10.1016/J.ENVPOL.2019.01.085. (PMID: 10.1016/J.ENVPOL.2019.01.085)
Ouyang Q, Kou F, Tsang PE et al (2019) Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin. J Clean Prod 232:1492–1498. https://doi.org/10.1016/J.JCLEPRO.2019.06.043. (PMID: 10.1016/J.JCLEPRO.2019.06.043)
Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigment 58:179–196. https://doi.org/10.1016/S0143-7208(03)00064-0. (PMID: 10.1016/S0143-7208(03)00064-0)
Ravikumar KVG, Dubey S, Chandrasekaran N, Mukherjee A (2016) Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride. J Mol Liq 224:589–598. https://doi.org/10.1016/J.MOLLIQ.2016.10.040. (PMID: 10.1016/J.MOLLIQ.2016.10.040)
Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2:1785–1803. https://doi.org/10.1016/J.JECE.2014.07.021. (PMID: 10.1016/J.JECE.2014.07.021)
Sivaram NM, Gopal PM, Barik D (2018) Toxic waste from textile industries. Energy from Toxic Org Waste Heat Power Gener 43–54. https://doi.org/10.1016/B978-0-08-102528-4.00004-3.
Sorensen P (2011) Mining in South Africa: a mature industry? Int J Environ Stud 68:625–649. https://doi.org/10.1080/00207233.2011.591242. (PMID: 10.1080/00207233.2011.591242)
Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632. https://doi.org/10.1016/J.CEJ.2015.11.046. (PMID: 10.1016/J.CEJ.2015.11.046)
Sun YP, Li XQ, Cao J et al (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56. https://doi.org/10.1016/J.CIS.2006.03.001. (PMID: 10.1016/J.CIS.2006.03.001)
Sun Y, Li J, Huang T, Guan X (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Res 100:277–295. https://doi.org/10.1016/J.WATRES.2016.05.031. (PMID: 10.1016/J.WATRES.2016.05.031)
Sundrarajan M, Ramalakshmi M (2012) Novel cubic magnetite nanoparticle synthesis using room temperature ionic liquid. E-Journal Chem 9:1070–1076. (PMID: 10.1155/2012/541254)
Teixeira YN, de Paula Filho FJ, Bacurau VP, et al (2022) Removal of Methylene Blue from a synthetic effluent by ionic flocculation. Heliyon 8:. https://doi.org/10.1016/J.HELIYON.2022.E10868.
Vadapalli VR, Gitari WM, Ellendt A et al (2010) Synthesis of zeolite-P from coal fly ash derivative and its utilisation in mine-water remediation. S Afr J Sci 106:1–7. https://doi.org/10.4102/sajs. (PMID: 10.4102/sajs)
Vishnoi H, Ramesh B, Kant R, Bodla RB (2018) Green tea (Camellia Sinensis) and its antioxidant property: a review. Artic Int J Pharm Sci Res 9:1723. https://doi.org/10.13040/IJPSR.0975-8232.9(5).1723-36.
Wang X, Jiang H, Fang D et al (2019b) A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization. Water Res 151:515–522. https://doi.org/10.1016/J.WATRES.2018.12.052. (PMID: 10.1016/J.WATRES.2018.12.052)
Wang N, Fang D, Zheng G, et al (2019a) A novel approach coupling ferrous iron bio-oxidation and ferric iron chemo-reduction to promote biomineralization in simulated acidic mine drainage †. https://doi.org/10.1039/c8ra09887e.
Widatalla HA, Yassin LF, Alrasheid AA et al (2022) Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv 4:911–915. https://doi.org/10.1039/D1NA00509J. (PMID: 10.1039/D1NA00509J)
Xu L, Tang M, Duan L et al (2014) Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant. Thermochim Acta 589:1–10. https://doi.org/10.1016/J.TCA.2014.05.005. (PMID: 10.1016/J.TCA.2014.05.005)
Yan Q, Lian C, Huang K et al (2021) Constructing an acidic microenvironment by MoS2 in heterogeneous fenton reaction for pollutant control. Angew Chemie - Int Ed 60:17155–17163. https://doi.org/10.1002/ANIE.202105736. (PMID: 10.1002/ANIE.202105736)
Yuvakkumar R,  Elango V,  Rajendran V et al (2011) Google Scholar. Dig J Nanomater nano Struct 6:1771–1776.
معلومات مُعتمدة: K5/2843//3 Water Research Commision of South Africa
فهرسة مساهمة: Keywords: Green tea extract; Iron nanoparticles; Acid mine drainage; Decoloration; Methylene blue; Sodium borohydride; Synthesis
المشرفين على المادة: T42P99266K (Methylene Blue)
0 (Plant Extracts)
0 (Tea)
87L0B9CPPA (sodium borohydride)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240526 Date Completed: 20240618 Latest Revision: 20240626
رمز التحديث: 20240627
مُعرف محوري في PubMed: PMC11189348
DOI: 10.1007/s11356-024-33739-3
PMID: 38797758
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33739-3