دورية أكاديمية

Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses.

التفاصيل البيبلوغرافية
العنوان: Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses.
المؤلفون: Akhtar K; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China., Ain NU; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China., Prasad PVV; Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA., Naz M; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China., Aslam MM; College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA., Djalovic I; Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia., Riaz M; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan., Ahmad S; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China., Varshney RK; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia., He B; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China., Wen R; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China.
المصدر: The plant genome [Plant Genome] 2024 Jun; Vol. 17 (2), pp. e20461. Date of Electronic Publication: 2024 May 26.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Crop Science Society of America Country of Publication: United States NLM ID: 101273919 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1940-3372 (Electronic) Linking ISSN: 19403372 NLM ISO Abbreviation: Plant Genome Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Madison, WI : Crop Science Society of America
مواضيع طبية MeSH: Nitrogen*/metabolism , Stress, Physiological*, Plants/metabolism ; Plants/genetics ; Gene Expression Regulation, Plant
مستخلص: Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH 4 + ) and nitrate (NO 3 - ) in plants mainly depends on soil properties. Under the sufficient availability of NO 3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO 3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH 4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO 3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
(© 2024 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
References: Abdelgadir, E. M., Oka, M., & Fujiyama, H. (2005). Characteristics of nitrate uptake by plants under salinity. Journal of Plant Nutrition, 28(1), 33–46. https://doi.org/10.1081/PLN‐200042156.
Abiala, M. A., Abdelrahman, M., Burritt, D. J., & Tran, L. S. P. (2018). Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt‐degraded soils. Land Degradation & Development, 29(10), 3812–3822.
Acosta‐Motos, J., Ortuño, M., Bernal‐Vicente, A., Diaz‐Vivancos, P., Sanchez‐Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018.
Ahanger, M. A., Qi, M., Huang, Z., Xu, X., Begum, N., Qin, C., Zhang, C., Ahmad, N., Mustafa, N. S., Ashraf, M., & Zhang, L. (2021). Improving growth and photosynthetic performance of drought stressed tomato by application of nano‐organic fertilizer involves up‐regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety, 216, 112195. https://doi.org/10.1016/j.ecoenv.2021.112195.
Ahmad, A., Khan, I., & Diwan, H. (2013). Chromium toxicity and tolerance in crop plants. In N. Tuteja & S. S. Gill (Eds.), Crop improvement under adverse conditions (pp. 309–332). Springer. https://doi.org/10.1007/978‐1‐4614‐4633‐0_14.
Alet, A. I., Sánchez, D. H., Cuevas, J. C., Marina, M., Carrasco, P., Altabella, T., Tiburcio, A. F., & Ruiz, O. A. (2012). New insights into the role of spermine in Arabidopsis thaliana under long‐term salt stress. Plant Science, 182, 94–100. https://doi.org/10.1016/j.plantsci.2011.03.013.
Annunziata, M. G., Ciarmiello, L. F., Woodrow, P., Maximova, E., Fuggi, A., & Carillo, P. (2017). Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Frontiers in Plant Science, 7, 232631. https://doi.org/10.3389/fpls.2016.02035.
Arce, M. I., Von Schiller, D., Bengtsson, M. M., Hinze, C., Jung, H., Alves, R. J. E., Urich, T., & Singer, G. (2018). Drying and rainfall shape the structure and functioning of nitrifying microbial communities in riverbed sediments. Frontiers in Microbiology, 9, 2794. https://doi.org/10.3389/fmicb.2018.02794.
Arghavani, M., Zaeimzadeh, A., Savadkoohi, S., & Samiei, L. (2017). Salinity tolerance of Kentucky bluegrass as affected by nitrogen fertilization. Journal of Agricultural Science and Technology, 19, 173–183.
Ashraf, M., Shahzad, S. M., Imtiaz, M., Rizwan, M. S., & Iqbal, M. M. (2017). Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress. Soil & Environment, 36(1), 51–58. https://doi.org/10.25252/SE/17/31054.
Aslam, M., Ahmad, K., Akhtar, M. A., & Maqbool, M. A. (2017). Salinity stress in crop plants: Effects of stress, tolerance mechanisms and breeding strategies for improvement. Journal of Agriculture and Basic Sciences, 2(1), 2518–4210.
Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8(7), 343–351. https://doi.org/10.1016/S1360‐1385(03)00136‐5.
Azmat, R., & Khan, N. (2011). Nitrogen metabolism as a bioindicator of Cu stress in Vigna radiata. Pakistan Journal of Botany, 43(1), 515–520.
Bailey‐Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., Perata, P., Voesenek, L. A. C. J., & Van Dongen, J. T. (2012). Making sense of low oxygen sensing. Trends in Plant Science, 17(3), 129–138. https://doi.org/10.1016/j.tplants.2011.12.004.
Balestrasse, K. B., Gardey, L., Gallego, S. M., & Tomaro, M. L. (2001). Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Functional Plant Biology, 28(6), 497–504. https://doi.org/10.1071/PP00158.
Balliu, A., Sallaku, G., & Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt‐stressed tomato seedlings. Sustainability, 7(12), 15967–15981. https://doi.org/10.3390/su71215799.
Barnes, F. W., & Schoenheimer, R. (1943). On the biological synthesis of purines and pyrimidines. Journal of Biological Chemistry, 151, 123–139. https://doi.org/10.1016/S0021‐9258(18)72120‐0.
Bascuñán‐Godoy, L., Sanhueza, C., Hernández, C. E., Cifuentes, L., Pinto, K., Álvarez, R., González‐Teuber, M., & Bravo, L. A. (2018). Nitrogen supply affects photosynthesis and photoprotective attributes during drought‐induced senescence in quinoa. Frontiers in Plant Science, 9, 994. https://doi.org/10.3389/fpls.2018.00994.
Bascuñán‐Godoy, L., Sanhueza, C., Pinto, K., Cifuentes, L., Reguera, M., Briones, V., Zurita‐Silva, A., Álvarez, R., Morales, A., & Silva, H. (2018). Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd.(Amaranthaceae). Scientific Reports, 8(1), 17524. https://doi.org/10.1038/s41598‐018‐34656‐5.
Ben Mansour, R., Ben Fattoum, R., Gouia, H., & Haouari, C. C. (2019). Salt stress effects on enzymes activities involved in carbon metabolism and nitrogen availability of two Tunisian durum wheat varieties. Journal of Plant Nutrition, 42(10), 1142–1151. https://doi.org/10.1080/01904167.2019.1604749.
Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., Dodani, S. C., Pellegrini, M., Huijser, P., Connolly, E. L., Merchant, S. S., & Krämer, U. (2012). Transcriptome sequencing identifies SPL7‐regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. The Plant Cell, 24(2), 738–761. https://doi.org/10.1105/tpc.111.090431.
Bernard, S. M., & Habash, D. Z. (2009). The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182(3), 608–620. https://doi.org/10.1111/j.1469‐8137.2009.02823.x.
Bernard, S. M., Møller, A. L. B., Dionisio, G., Kichey, T., Jahn, T. P., Dubois, F., Baudo, M., Lopes, M. S., Tercé‐Laforgue, T., Foyer, C. H., Parry, M. A. J., Forde, B. G., Araus, J. L., Hirel, B., Schjoerring, J. K., & Habash, D. Z. (2008). Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Molecular Biology, 67, 89–105. https://doi.org/10.1007/s11103‐008‐9303‐y.
Bi, Y.‐M., Zhang, Y., Signorelli, T., Zhao, R., Zhu, T., & Rothstein, S. (2005). Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate‐inducible member important for chlorophyll synthesis and glucose sensitivity. The Plant Journal, 44(4), 680–692. https://doi.org/10.1111/j.1365‐313X.2005.02568.x.
Blais, M., Tremblay, J.‐É., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., & Lovejoy, C. (2012). Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic. Global Biogeochemical Cycles, 26(3), GB3022. https://doi.org/10.1029/2011GB004096.
Calabrese, S., Kohler, A., Niehl, A., Veneault‐Fourrey, C., Boller, T., & Courty, P.‐E. (2017). Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis mycorrhizal symbiosis: Regulation of plant and fungal transportomes under nitrogen starvation. Plant and Cell Physiology, 58(6), 1003–1017. https://doi.org/10.1093/pcp/pcx044.
Castro‐Rodríguez, V., Cañas, R. A., De La Torre, F. N., Pascual, M. B., Avila, C., & Cánovas, F. M. (2017). Molecular fundamentals of nitrogen uptake and transport in trees. Journal of Experimental Botany, 68(10), 2489–2500. https://doi.org/10.1093/jxb/erx037.
Castro‐Rodríguez, V., García‐Gutiérrez, A., Canales, J., Cañas, R. A., Kirby, E. G., Avila, C., & Cánovas, F. M. (2016). Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnology Journal, 14(1), 299–312. https://doi.org/10.1111/pbi.12384.
Chaffei, C. (2003). Nitrogen metabolism of tomato under cadmium stress conditions. Journal of Plant Nutrition, 26, 1617–1634.
Chen, Q., Cao, X., Li, Y., Sun, Q., Dai, L., Li, J., Guo, Z., Zhang, L., & Ci, L. (2022). Functional carbon nanodots improve soil quality and tomato tolerance in saline‐alkali soils. Science of the Total Environment, 830, 154817. https://doi.org/10.1016/j.scitotenv.2022.154817.
Chen, Y., Yan, Q., Zhang, L., Liu, W., Liu, H., & Yan, Y. (2013). Research progress on nitrogen and plant growth. Journal of Northeast Agricultural University, 44(4), 144–148.
Christophe, S., Jean‐Christophe, A., Annabelle, L., Alain, O., Marion, P., & Anne‐Sophie, V. (2011). Plant N fluxes and modulation by nitrogen, heat and water stresses: A review based on comparison of legumes and non legume plants. In A. Shanker & B. Venkateswarlu (Eds.), Abiotic stress in plants—Mechanisms and adaptations (pp. 79–118). InTech.
Clouse, K. M., & Wagner, M. R. (2021). Plant genetics as a tool for manipulating crop microbiomes: Opportunities and challenges. Frontiers in Bioengineering and Biotechnology, 9, 567548. https://doi.org/10.3389/fbioe.2021.567548.
Coleman, H. D., Cánovas, F. M., Man, H., Kirby, E. G., & Mansfield, S. D. (2012). Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba)(717‐1B4). Plant Biotechnology Journal, 10(7), 883–889. https://doi.org/10.1111/j.1467‐7652.2012.00714.x.
Coskun, D., Britto, D. T., Li, M., Becker, A., & Kronzucker, H. J. (2013). Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiology, 163(4), 1859–1867. https://doi.org/10.1104/pp.113.225961.
Cui, Q., Xia, J., Yang, H., Liu, J., & Shao, P. (2021). Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline‐alkali soil of the Yellow River Delta, China. Science of the Total Environment, 756, 143801. https://doi.org/10.1016/j.scitotenv.2020.143801.
Das, A., Rushton, P., & Rohila, J. (2017). Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants, 6(2), 21. https://doi.org/10.3390/plants6020021.
Debouba, M., Maaroufi‐Dghimi, H., Suzuki, A., Ghorbel, M. H., & Gouia, H. (2007). Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Annals of Botany, 99(6), 1143–1151. https://doi.org/10.1093/aob/mcm050.
Dechorgnat, J., Patrit, O., Krapp, A., Fagard, M., & Daniel‐Vedele, F. (2012). Characterization of the Nrt2.6 gene in Arabidopsis thaliana: A link with plant response to biotic and abiotic stress. PLoS One, 7, e42491.
de Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49(2), 107–120. https://doi.org/10.1016/S0098‐8472(02)00064‐3.
de Souza Miranda, R., Gomes‐Filho, E., Prisco, J. T., & Alvarez‐Pizarro, J. C. (2016). Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regulation, 78, 121–131. https://doi.org/10.1007/s10725‐015‐0079‐1.
Diaz, C., Lemaître, T., Christ, A., Azzopardi, M., Kato, Y., Sato, F., Morot‐Gaudry, J.‐F., Le Dily, F., & Masclaux‐Daubresse, C. (2008). Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiology, 147(3), 1437–1449. https://doi.org/10.1104/pp.108.119040.
Dodds, W. K., & Whiles, M. R. (2020). Nitrogen, sulfur, phosphorus, and other nutrients. In W. K. Dodds & M. R. Whiles (Eds.), Freshwater ecology (3rd ed., pp. 395–424). Academic Press.
Duan, J., Tian, H., Drijber, R. A., & Gao, Y. (2015). Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 96, 199–208. https://doi.org/10.1016/j.plaphy.2015.08.006.
Ehlting, B., Dluzniewska, P., Dietrich, H., Selle, A., Teuber, M., Hänsch, R., Nehls, U., Polle, A., Schnitzler, J. P., Rennenberg, H., & Gessler, A. (2007). Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula × alba). Plant, Cell & Environment, 30(7), 796–811.
Emberson, L. D., Büker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., Atikuzzaman, M. D., Cinderby, S., Engardt, M., Jamir, C., Kobayashi, K., Oanh, N. T. K., Quadir, Q. F., & Wahid, A. (2009). A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmospheric Environment, 43(12), 1945–1953. https://doi.org/10.1016/j.atmosenv.2009.01.005.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147. https://doi.org/10.3389/fpls.2017.01147.
Fan, S.‐C., Lin, C.‐S., Hsu, P.‐K., Lin, S.‐H., & Tsay, Y.‐F (2009). The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source‐to‐sink remobilization of nitrate. The Plant Cell, 21(9), 2750–2761. https://doi.org/10.1105/tpc.109.067603.
Fan, X., Naz, M., Fan, X., Xuan, W., Miller, A. J., & Xu, G. (2017). Plant nitrate transporters: From gene function to application. Journal of Experimental Botany, 68(10), 2463–2475. https://doi.org/10.1093/jxb/erx011.
Feng, H., Yan, M., Fan, X., Li, B., Shen, Q., Miller, A. J., & Xu, G. (2011). Spatial expression and regulation of rice high‐affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, 62(7), 2319–2332. https://doi.org/10.1093/jxb/erq403.
Forde, B. G., & Lea, P. J. (2007). Glutamate in plants: Metabolism, regulation, and signalling. Journal of Experimental Botany, 58(9), 2339–2358. https://doi.org/10.1093/jxb/erm121.
Frugier, F., Poirier, S., Satiat‐Jeunemaître, B., Kondorosi, A., & Crespi, M. (2000). A Krüppel‐like zinc finger protein is involved in nitrogen‐fixing root nodule organogenesis. Genes & Development, 14(4), 475–482.
Fu, F., & Bell, P. (2003). Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp. Marine Ecology Progress Series, 257, 69–76. https://doi.org/10.3354/meps257069.
Gangwar, S., & Singh, V. P. (2011). Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (VI) phytotoxicity: Implication of oxidative stress. Scientia Horticulturae, 129(2), 321–328. https://doi.org/10.1016/j.scienta.2011.03.026.
Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., Dong, G., Zhu, L., Hu, J., Zhang, G., Zeng, D., Guo, L., Xu, G., Teng, S., Harberd, N. P., & Qian, Q. (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 10(1), 5207. https://doi.org/10.1038/s41467‐019‐13110‐8.
Garnett, T., Conn, V., & Kaiser, B. N. (2009). Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell & Environment, 32(9), 1272–1283.
Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39–50. https://doi.org/10.1016/S0098‐8472(01)00109‐5.
Girin, T., Lejay, L., Wirth, J., Widiez, T., Palenchar, P. M., Nazoa, P., Touraine, B., Gojon, A., & Lepetit, M. (2007). Identification of a 150 bp cis‐acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, Cell & Environment, 30(11), 1366–1380.
Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231–1240. https://doi.org/10.1007/s11274‐010‐0572‐7.
Guo, R., Shi, L., Yan, C., Zhong, X., Gu, F., Liu, Q. I., Xia, X., & Li, H. (2017). Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biology, 17, Article 41. https://doi.org/10.1186/s12870‐017‐0994‐6.
Guo, T., Xuan, H., Yang, Y., Wang, L., Wei, L., Wang, Y., & Kang, G. (2014). Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation. Journal of Plant Growth Regulation, 33, 837–848. https://doi.org/10.1007/s00344‐014‐9435‐z.
Hachiya, T., & Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68(10), 2501–2512.
Harman, G. E., & Uphoff, N. (2019). Symbiotic root‐endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica, 2019, 9106395.
Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J. A., Hossain, S., Alam, K., Oku, H., & Fujita, M. (2017). Actions of biological trace elements in plant abiotic stress tolerance. In M. Naeem, A. A. Ansari, & S. S. Gill (Eds.), Essential plant nutrients: Uptake, use efficiency, and management (pp. 213–274). Springer Cham. https://doi.org/10.1007/978‐3‐319‐58841‐4_10.
Heerah, S., Katari, M., Penjor, R., Coruzzi, G., & Marshall‐Colon, A. (2019). WRKY1 mediates transcriptional regulation of light and nitrogen signaling pathways. Plant Physiology, 181(3), 1371–1388. https://doi.org/10.1104/pp.19.00685.
Hoff, T., Stummann, B. M., & Henningsen, K. W. (1992). Structure, function and regulation of nitrate reductase in higher plants. Physiologia Plantarum, 84(4), 616–624. https://doi.org/10.1111/j.1399‐3054.1992.tb04712.x.
Hörtensteiner, S., & Feller, U. (2002). Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany, 53(370), 927–937. https://doi.org/10.1093/jexbot/53.370.927.
Houdusse, F., Garnica, M., & García‐Mina, J. M. (2007). Nitrogen fertiliser source effects on the growth and mineral nutrition of pepper (Capsicum annuum L.) and wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture, 87(11), 2099–2105. https://doi.org/10.1002/jsfa.2970.
Hsu, P.‐K., & Tsay, Y.‐F (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem‐borne nitrate to enhance plant growth. Plant Physiology, 163(2), 844–856. https://doi.org/10.1104/pp.113.226563.
Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., Zhang, Z., Chai, X., Wang, H., Wang, Y., Liang, C., Liu, L., Piao, Z., Deng, Q., Deng, K., Xu, C., Liang, Y., Zhang, L., Li, L., & Chu, C. (2015). Variation in NRT1. 1B contributes to nitrate‐use divergence between rice subspecies. Nature Genetics, 47(7), 834–838. https://doi.org/10.1038/ng.3337.
Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H., & Tong, Y. (2018). Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 16(11), 1858–1867. https://doi.org/10.1111/pbi.12921.
Huang, J., Zhu, C., Hussain, S., Huang, J., Liang, Q., Zhu, L., Cao, X., Kong, Y., Li, Y., Wang, L., Li, J., & Zhang, J. (2020). Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiology and Biochemistry, 155, 374–383. https://doi.org/10.1016/j.plaphy.2020.06.013.
Huang, L., Li, M., Shao, Y., Sun, T., Li, C., & Ma, F. (2018). Ammonium uptake increases in response to PEG‐induced drought stress in Malus hupehensis Rehd. Environmental and Experimental Botany, 151, 32–42. https://doi.org/10.1016/j.envexpbot.2018.04.007.
Huang, L., Li, M., Zhou, K., Sun, T., Hu, L., Li, C., & Ma, F. (2018). Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia. Plant Physiology and Biochemistry, 127, 185–193. https://doi.org/10.1016/j.plaphy.2018.03.031.
Huang, W., Nie, H., Feng, F., Wang, J., Lu, K., & Fang, Z. (2019). Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Science, 283, 23–31. https://doi.org/10.1016/j.plantsci.2019.01.019.
Huang, W., Peng, J., Gong, R., Tuo, H., & Fan, Y. (2015). Effects of cadmium stress on key enzymes involved in nitrogen metabolism and nitrogen, phosphorus, potassium accumulation of different varieties of rice. Agricultural Science & Technology, 16(6), 1204.
Hungria, M., & Kaschuk, G. (2014). Regulation of N2 fixation and NO3−/NH4+ assimilation in nodulated and N‐fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environmental and Experimental Botany, 98, 32–39. https://doi.org/10.1016/j.envexpbot.2013.10.010.
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393.
Hussain, M. I., Al‐Dakheel, A. J., & Reigosa, M. J. (2018). Genotypic differences in agro‐physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry, 129, 411–420. https://doi.org/10.1016/j.plaphy.2018.06.023.
Hutchins, D., Mulholland, M., & Fu, F. (2009). Nutrient cycles and marine microbes in a CO₂‐enriched ocean. Oceanography, 22(4), 128–145. https://doi.org/10.5670/oceanog.2009.103.
Hütsch, B. W., He, W., & Schubert, S. (2016). Nitrogen nutritional status of young maize plants (Zea mays) is not limited by NaCl stress. Journal of Plant Nutrition and Soil Science, 179(6), 775–783. https://doi.org/10.1002/jpln.201500565.
Igiehon, N., & Babalola, O. (2018). Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health, 15(4), 574. https://doi.org/10.3390/ijerph15040574.
Iwamoto, M., & Tagiri, A. (2016). Micro RNA‐targeted transcription factor gene RDD 1 promotes nutrient ion uptake and accumulation in rice. The Plant Journal, 85(4), 466–477. https://doi.org/10.1111/tpj.13117.
James, R. A., Blake, C., Zwart, A. B., Hare, R. A., Rathjen, A. J., & Munns, R. (2012). Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology, 39(7), 609–618. https://doi.org/10.1071/FP12121.
Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133(6), 679–701. https://doi.org/10.1111/pbr.12217.
Jia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One, 10(3), e0120646. https://doi.org/10.1371/journal.pone.0120646.
Kaiser, J., Brenninkmeijer, C. A. M., & Röckmann, T. (2002). Intramolecular 15N and 18O fractionation in the reaction of N2O with O(1D) and its implications for the stratospheric N2O isotope signature. Journal of Geophysical Research: Atmospheres, 107(D14), ACH 16‐1–ACH 16‐14. https://doi.org/10.1029/2001JD001506.
Kasemsap, P., & Bloom, A. J. (2022). Breeding for higher yields of wheat and rice through modifying nitrogen metabolism. Plants, 12(1), 85. https://doi.org/10.3390/plants12010085.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi‐Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress‐inducible transcription factor. Nature Biotechnology, 17(3), 287–291. https://doi.org/10.1038/7036.
Khan, M. I. R., Iqbal, N., Masood, A., Mobin, M., Anjum, N. A., & Khan, N. A. (2016). Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulation, 78, 1–11. https://doi.org/10.1007/s10725‐015‐0071‐9.
Khan, N. A., Khan, M. I. R., Asgher, M., Fatma, M., Masood, A., & Syeed, S. (2014). Salinity tolerance in plants: Revisiting the role of sulfur metabolites. Journal of Plant Biochemistry & Physiology, 2(2), 10–4172.
Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., & Hattori, T. (2004). Differential activation of the rice sucrose nonfermenting1–related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell, 16(5), 1163–1177. https://doi.org/10.1105/tpc.019943.
Konishi, N., & Ma, J. F. (2021). Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist, 232(4), 1778–1792. https://doi.org/10.1111/nph.17679.
Kozlov, M. V. (2005). Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper–nickel smelter: Natural selection or phenotypic acclimation? Chemosphere, 59(2), 189–197. https://doi.org/10.1016/j.chemosphere.2004.11.010.
Krouk, G., Mirowski, P., Lecun, Y., Shasha, D. E., & Coruzzi, G. M. (2010). Predictive network modeling of the high‐resolution dynamic plant transcriptome in response to nitrate. Genome Biology, 11, 1–19. https://doi.org/10.1186/gb‐2010‐11‐12‐r123.
Kumar, A., & Verma, J. P. (2018). Does plant–microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207, 41–52. https://doi.org/10.1016/j.micres.2017.11.004.
Kumar, S., & Joshi, U. N. (2008). Nitrogen metabolism as affected by hexavalent chromium in sorghum (Sorghum bicolor L.). Environmental and experimental botany, 64(2), 135–144. https://doi.org/10.1016/j.envexpbot.2008.02.005.
Kusano, M., Fukushima, A., Redestig, H., & Saito, K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 62(4), 1439–1453. https://doi.org/10.1093/jxb/erq417.
Lawlor, D. W. (2002). Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. Journal of Experimental Botany, 53(370), 773–787. https://doi.org/10.1093/jexbot/53.370.773.
Le Bozec, L., & Moody, C. J. (2009). Naturally occurring nitrogen–sulfur compounds. The benzothiazole alkaloids. Australian Journal of Chemistry, 62(7), 639–647. https://doi.org/10.1071/CH09126.
Lee, S., Park, J., Lee, J., Shin, D., Marmagne, A., Lim, P. O., Masclaux‐Daubresse, C., An, G., & Nam, H. G. (2020). OsASN1 overexpression in rice increases grain protein content and yield under nitrogen‐limiting conditions. Plant and Cell Physiology, 61(7), 1309–1320. https://doi.org/10.1093/pcp/pcaa060.
Li, C., Tang, Z., Wei, J., Qu, H., Xie, Y., & Xu, G. (2016). The OsAMT1.1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges. Journal of Genetics and Genomics, 43(11), 639–649. https://doi.org/10.1016/j.jgg.2016.11.001.
Li, J.‐Y., Fu, Y.‐L., Pike, S. M., Bao, J., Tian, W., Zhang, Y., Chen, C.‐Z., Zhang, Y., Li, H.‐M., Huang, J., Li, L.‐G., Schroeder, J. I., Gassmann, W., & Gong, J.‐M (2010). The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, 22(5), 1633–1646. https://doi.org/10.1105/tpc.110.075242.
Li, L., Gong, H., Sun, Z., & Li, T. (2019). Identification of conserved genes involved in nitrogen metabolic activities in wheat. PeerJ, 7, e7281. https://doi.org/10.7717/peerj.7281.
Liao, W.‐L., Ramón, A. M., & Fonzi, W. A. (2008). GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genetics and Biology, 45(4), 514–526. https://doi.org/10.1016/j.fgb.2007.08.006.
Lin, J., Li, X., Zhang, Z., Yu, X., Gao, Z., Wang, Y., & Mu, C. (2012). Salinity‐alkalinity tolerance in wheat: Seed germination, early seedling growth, ion relations and solute accumulation. African Journal of Agricultural Research, 7, 467–474.
Lin, J., Yu, D., Shi, Y., Sheng, H., Li, C., Wang, Y., Mu, C., & Li, X. (2016). Salt‐alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecological Engineering, 95, 763–769. https://doi.org/10.1016/j.ecoleng.2016.07.011.
Lindström, K., & Mousavi, S. A. (2010). Rhizobium and other N‐fixing symbioses. Encyclopedia of life sciences. John Wiley & Sons. https://doi.org/10.1002/9780470015902.a0021157.
Liu, X., Huang, D., Tao, J., Miller, A. J., Fan, X., & Xu, G. (2014). Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two‐component system for high‐affinity nitrate transport. New Phytologist, 204(1), 74–80. https://doi.org/10.1111/nph.12986.
Liu, X., Ma, Y., Manevski, K., Andersen, M. N., Li, Y., Wei, Z., & Liu, F. (2022). Biochar and alternate wetting‐drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol. Science of the Total Environment, 806, 150513. https://doi.org/10.1016/j.scitotenv.2021.150513.
Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003.
Mainali, K. P., Heckathorn, S. A., Wang, D., Weintraub, M. N., Frantz, J. M., & Hamilton, E. W (2014). Impact of a short‐term heat event on C and N relations in shoots vs. roots of the stress‐tolerant C4 grass, Andropogon gerardii. Journal of Plant Physiology, 171(12), 977–985. https://doi.org/10.1016/j.jplph.2014.04.006.
Martinière, A., Gibrat, R., Sentenac, H., Dumont, X., Gaillard, I., & Paris, N. (2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proceedings of the National Academy of Sciences, 115(25), 6488–6493. https://doi.org/10.1073/pnas.1721769115.
Masclaux, C., Valadier, M.‐H., Brugière, N., Morot‐Gaudry, J.‐F., & Hirel, B. (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta, 211(4), 510–518. https://doi.org/10.1007/s004250000310.
Masclaux‐Daubresse, C., Daniel‐Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028.
Masclaux‐Daubresse, C., Reisdorf‐Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., Valadier, M.‐H., Feraud, M., Jouglet, T., & Suzuki, A. (2006). Glutamine synthetase‐glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink‐source nitrogen cycle in tobacco. Plant Physiology, 140(2), 444–456. https://doi.org/10.1104/pp.105.071910.
Matamoros, M. A., & Becana, M. (2021). Molecular responses of legumes to abiotic stress: Post‐translational modifications of proteins and redox signaling. Journal of Experimental Botany, 72(16), 5876–5892. https://doi.org/10.1093/jxb/erab008.
Mattsson, M., & Schjoerring, J. K. (2003). Senescence‐induced changes in apoplastic and bulk tissue ammonia concentrations of ryegrass leaves. New Phytologist, 160(3), 489–499. https://doi.org/10.1046/j.1469‐8137.2003.00902.x.
Mayer, M., Dynowski, M., & Ludewig, U. (2006). Ammonium ion transport by the AMT/Rh homologue LeAMT1;1. Biochemical Journal, 396(3), 431–437. https://doi.org/10.1042/BJ20060051.
McAllister, C. H., Beatty, P. H., & Good, A. G. (2012). Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnology Journal, 10(9), 1011–1025. https://doi.org/10.1111/j.1467‐7652.2012.00700.x.
McNear, D. H., Jr. (2013). The rhizosphere—Roots, soil and everything in between. Nature Education Knowledge, 4(3), 1.
Meng, S., Zhang, C., Su, L., Li, Y., & Zhao, Z. (2016). Nitrogen uptake and metabolism of Populus simonii in response to PEG‐induced drought stress. Environmental and Experimental Botany, 123, 78–87. https://doi.org/10.1016/j.envexpbot.2015.11.005.
Meyer, C., & Stitt, M. (2001). Nitrate reduction and signalling. In P. J. Lea & J.‐F. Morot‐Gaudry (Eds.), Plant nitrogen (pp. 37–59). Springer.
Miflin, B. J., & Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53(370), 979–987. https://doi.org/10.1093/jexbot/53.370.979.
Milroy, S. P., Bange, M. P., & Thongbai, P. (2009). Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crops Research, 113(3), 246–255. https://doi.org/10.1016/j.fcr.2009.05.012.
Miranda‐Apodaca, J., Agirresarobe, A., Martínez‐Goñi, X. S., Yoldi‐Achalandabaso, A., & Pérez‐López, U. (2020). N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions. Plant Physiology and Biochemistry, 155, 725–734. https://doi.org/10.1016/j.plaphy.2020.08.007.
Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002.
Mobin, M. (2013). Effects of cadmium‐induced oxidative stress on growth and nitrogen assimilation in blackgram [Vigna mungo (L.) Hepper]. Journal of Agricultural Sciences, 58(1), 31–39. https://doi.org/10.2298/JAS1301031M.
Mohamed, K. (2012). Improving the tolerance of Vicia faba against environmental salinity resulted from the irrigation with sea water by using KNO3 and (NH4) 2SO4 as chemical osmoregulators. Acta Biológica Colombiana, 17(2), 295–308.
Morales, F., Ancín, M., Fakhet, D., González‐Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88. https://doi.org/10.3390/plants9010088.
Muños, S., Cazettes, C., Fizames, C., Gaymard, F., Tillard, P., Lepetit, M., Lejay, L., & Gojon, A. (2004). Transcript profiling in the chl1‐5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. The Plant Cell, 16(9), 2433–2447. https://doi.org/10.1105/tpc.104.024380.
Nabi, R. B. S., Tayade, R., Hussain, A., Kulkarni, K. P., Imran, Q. M., Mun, B.‐G., & Yun, B.‐W. (2019). Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 161, 120–133. https://doi.org/10.1016/j.envexpbot.2019.02.003.
Nagy, Z., Németh, E., Guóth, A., Bona, L., Wodala, B., & Pécsváradi, A. (2013). Metabolic indicators of drought stress tolerance in wheat: Glutamine synthetase isoenzymes and Rubisco. Plant Physiology and Biochemistry, 67, 48–54. https://doi.org/10.1016/j.plaphy.2013.03.001.
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1–3), 57–69. https://doi.org/10.1016/j.livsci.2010.02.011.
Naz, M., Luo, B., Guo, X., Li, B., Chen, J., & Fan, X. (2019). Overexpression of nitrate transporter OsNRT2.1 enhances nitrate‐dependent root elongation. Genes, 10(4), 290. https://doi.org/10.3390/genes10040290.
Nazoa, P., Vidmar, J. J., Tranbarger, T. J., Mouline, K., Damiani, I., Tillard, P., Zhuo, D., Glass, A. D. M., & Touraine, B. (2003). Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: Responses to nitrate, amino acids and developmental stage. Plant Molecular Biology, 52, 689–703. https://doi.org/10.1023/A:1024899808018.
Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., Warner, D. C., Anstrom, D. C., Bensen, R. J., Castiglioni, P. P., Donnarummo, M. G., Hinchey, B. S., Kumimoto, R. W., Maszle, D. R., Canales, R. D., Krolikowski, K. A., Dotson, S. B., Gutterson, N., Ratcliffe, O. J., & Heard, J. E. (2007). Plant nuclear factor Y (NF‐Y) B subunits confer drought tolerance and lead to improved corn yields on water‐limited acres. Proceedings of the National Academy of Sciences, 104(42), 16450–16455. https://doi.org/10.1073/pnas.0707193104.
Okamoto, M., Kumar, A., Li, W., Wang, Y., Siddiqi, M. Y., Crawford, N. M., & Glass, A. D. M. (2006). High‐affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2‐like gene AtNRT3.1. Plant Physiology, 140(3), 1036–1046. https://doi.org/10.1104/pp.105.074385.
Orsel, M., Chopin, F., Leleu, O., Smith, S. J., Krapp, A., Daniel‐Vedele, F., & Miller, A. J. (2006). Characterization of a two‐component high‐affinity nitrate uptake system in Arabidopsis. Physiology and protein‐protein interaction. Plant Physiology, 142(3), 1304–1317. https://doi.org/10.1104/pp.106.085209.
Orsel, M., Krapp, A., & Daniel‐Vedele, F. (2002). Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology, 129(2), 886–896. https://doi.org/10.1104/pp.005280.
Ortiz‐Ramirez, C., Mora, S. I., Trejo, J., & Pantoja, O. (2011). PvAMT1;1, a highly selective ammonium transporter that functions as H+/NH4+ symporter. Journal of Biological Chemistry, 286(36), 31113–31122. https://doi.org/10.1074/jbc.M111.261693.
Pajuelo, E., Rodríguez‐Llorente, I. D., Dary, M., & Palomares, A. J. (2008). Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environmental Pollution, 154(2), 203–211. https://doi.org/10.1016/j.envpol.2007.10.015.
Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006.
Park, B. S., Song, J. T., & Seo, H. S. (2011). Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nature Communications, 2(1), 400. https://doi.org/10.1038/ncomms1408.
Patterson, K., Cakmak, T., Cooper, A., Lager, I., Rasmusson, A. G., & Escobar, M. A. (2010). Distinct signalling pathways and transcriptome response signatures differentiate ammonium‐and nitrate‐supplied plants. Plant, Cell & Environment, 33(9), 1486–1501.
Qian, L., Hu, C., Zhao, X., Wang, Y., Xin, J., Zheng, Y., & Sun, X. (2015). Effect of cadmium stress on nitrogen metabolism and photosynthesis of different Chinese cabbages. Journal of Huazhong Agricultural University, 34(3), 69–75. (In Chinese).
Qu, Y., Tang, J., Liu, B., Lyu, H., Duan, Y., Yang, Y., Wang, S., & Li, Z. (2022). Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region. Scientific Reports, 12(1), 1314. https://doi.org/10.1038/s41598‐022‐05218‐7.
Queiroz, H. M., Sodek, L., & Haddad, C. R. B. (2012). Effect of salt on the growth and metabolism of Glycine max. Brazilian Archives of Biology and Technology, 55, 809–817. https://doi.org/10.1590/S1516‐89132012000600002.
Rais, L., & Masood, A. (2013). Sulfur and nitrogen co‐ordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. Journal of Plant Biochemistry & Physiology, 1(1), 1000101. https://doi.org/10.4172/2329‐9029.1000101.
Ren, B., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2016). Root and shoot responses of summer maize to waterlogging at different stages. Agronomy Journal, 108(3), 1060–1069. https://doi.org/10.2134/agronj2015.0547.
Rennenberg, H., Loreto, F., Polle, A., Brilli, F., Fares, S., Beniwal, R. S., & Gessler, A. (2006). Physiological responses of forest trees to heat and drought. Plant Biology, 8, 556–571. https://doi.org/10.1055/s‐2006‐924084.
Rennenberg, H., Wildhagen, H., & Ehlting, B. (2010). Nitrogen nutrition of poplar trees. Plant Biology, 12(2), 275–291. https://doi.org/10.1111/j.1438‐8677.2009.00309.x.
Rizvi, A., & Khan, M. S (2018). Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicology and Environmental Safety, 157, 9–20. https://doi.org/10.1016/j.ecoenv.2018.03.063.
Robredo, A., Pérez‐López, U., Miranda‐Apodaca, J., Lacuesta, M., Mena‐Petite, A., & Muñoz‐Rueda, A. (2011). Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany, 71(3), 399–408.
Ruan, J., Gerendás, J., Härdter, R., & Sattelmacher, B. (2007). Effect of nitrogen form and root‐zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany, 99(2), 301–310. https://doi.org/10.1093/aob/mcl258.
Ryu, M.‐H., Zhang, J., Toth, T., Khokhani, D., Geddes, B. A., Mus, F., Garcia‐Costas, A., Peters, J. W., Poole, P. S., Ané, J.‐M., & Voigt, C. A. (2020). Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 5(2), 314–330. https://doi.org/10.1038/s41564‐019‐0631‐2.
Sardans, J., & Peñuelas, J. (2012). The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant‐soil system. Plant Physiology, 160(4), 1741–1761. https://doi.org/10.1104/pp.112.208785.
Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth‐promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, Article 102. https://doi.org/10.1007/s13205‐017‐0736‐3.
Schjoerring, J. K., Husted, S., Mäck, G., & Mattsson, M. (2002). The regulation of ammonium translocation in plants. Journal of Experimental Botany, 53(370), 883–890. https://doi.org/10.1093/jexbot/53.370.883.
Seleiman, M. F., Al‐Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul‐Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259.
Shabala, S. (2011). Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytologist, 190(2), 289–298. https://doi.org/10.1111/j.1469‐8137.2010.03575.x.
Shahid, M. A., Balal, R. M., Khan, N., Zotarelli, L., Liu, G., Ghazanfar, M. U., Rathinasabapathi, B., Mattson, N. S., Martínez‐Nicolas, J. J., & Garcia‐Sanchez, F. (2018). Ploidy level of citrus rootstocks affects the carbon and nitrogen metabolism in the leaves of Chromium‐stressed Kinnow mandarin plants. Environmental and Experimental Botany, 149, 70–80. https://doi.org/10.1016/j.envexpbot.2018.02.010.
Sharma, S. S., & Dietz, K.‐J. (2006). The significance of amino acids and amino acid‐derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726. https://doi.org/10.1093/jxb/erj073.
Shimamura, C., Ohno, R., Nakamura, C., & Takumi, S. (2006). Improvement of freezing tolerance in tobacco plants expressing a cold‐responsive and chloroplast‐targeting protein WCOR15 of wheat. Journal of Plant Physiology, 163(2), 213–219. https://doi.org/10.1016/j.jplph.2005.06.008.
Shruti, M., & Dubey, R. (2010). Heavy metal uptake and detoxification mechanisms in plants. International Journal of Agricultural Research, 5(7), 482–501.
Sita, K., Sehgal, A., Hanumantharao, B., Nair, R. M., Vara Prasad, P. V., Kumar, S., Gaur, P. M., Farooq, M., Siddique, K. H. M., Varshney, R. K., & Nayyar, H. (2017). Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658. https://doi.org/10.3389/fpls.2017.01658.
Song, M., Fan, X., Chen, J., Qu, H., Luo, L., & Xu, G. (2020). OsNAR2.1 interaction with OsNIT1 and OsNIT2 functions in root‐growth responses to nitrate and ammonium. Plant Physiology, 183(1), 289–303. https://doi.org/10.1104/pp.19.01364.
Swarbreck, S. M., Wang, M., Wang, Y., Kindred, D., Sylvester‐Bradley, R., Shi, W., Singh, V., Bentley, A. R., & Griffiths, H. (2019). A roadmap for lowering crop nitrogen requirement. Trends in Plant Science, 24(10), 892–904. https://doi.org/10.1016/j.tplants.2019.06.006.
Syam, N., Wardiyati, T., Maghfoer, M. D., Handayanto, E., Ibrahim, B., & Muchdar, A. (2016). Effect of accumulator plants on growth and nickel accumulation of soybean on metal‐contaminated soil. Agriculture and Agricultural Science Procedia, 9, 13–19. https://doi.org/10.1016/j.aaspro.2016.02.109.
Sylvester‐Bradley, R., & Kindred, D. R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 60(7), 1939–1951.
Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., Zhang, Y., Xu, S., An, H., Chen, G., Yu, J., Wu, W., Ge, Y., Liu, X., Li, J., Zhang, H., Zhao, Y., Yang, B., Jiang, X., … Wan, J. (2019). Genome‐wide associated study identifies NAC42‐activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 10(1), Article 5279. https://doi.org/10.1038/s41467‐019‐13187‐1.
Tian, H., Yuan, X., Duan, J., Li, W., Zhai, B., & Gao, Y. (2017). Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. PLoS One, 12(2), e0172154. https://doi.org/10.1371/journal.pone.0172154.
Tsay, Y.‐F., Chiu, C.‐C., Tsai, C.‐B., Ho, C.‐H., & Hsu, P.‐K (2007). Nitrate transporters and peptide transporters. Febs Letters, 581(12), 2290–2300. https://doi.org/10.1016/j.febslet.2007.04.047.
Verma, S. K., Singh, S. B., Prasad, S. K., Meena, R. N., & Meena, R. S. (2015). Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh Journal of Botany, 44(3), 437–442. https://doi.org/10.3329/bjb.v44i3.38551.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011.
Walker, R. P., Benincasa, P., Battistelli, A., Moscatello, S., Técsi, L., Leegood, R. C., & Famiani, F. (2018). Gluconeogenesis and nitrogen metabolism in maize. Plant Physiology and Biochemistry, 130, 324–333. https://doi.org/10.1016/j.plaphy.2018.07.009.
Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., & Yang, C. (2012). Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology, 12, 1–11. https://doi.org/10.1186/1471‐2229‐12‐194.
Wang, L., Li, K., Sheng, R., Li, Z., & Wei, W. (2019). Remarkable N2O emissions by draining fallow paddy soil and close link to the ammonium‐oxidizing archaea communities. Scientific Reports, 9(1), 2550. https://doi.org/10.1038/s41598‐019‐39465‐y.
Wang, L., Zou, R., Cai, J., Liu, G., Jiang, Y., Chai, G., Qin, S., & Fan, C. (2023). Effect of Cd toxicity on root morphology, ultrastructure, Cd uptake and accumulation of wheat under intercropping with Solanum nigrum L. Heliyon, 9, e16270.
Wang, R., Xing, X., & Crawford, N. (2007). Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiology, 145(4), 1735–1745. https://doi.org/10.1104/pp.107.108944.
Wang, Y.‐Y., & Tsay, Y.‐F (2011). Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. The Plant Cell, 23(5), 1945–1957. https://doi.org/10.1105/tpc.111.083618.
Wei, J., Zheng, Y., Feng, H., Qu, H., Fan, X., Yamaji, N., Ma, J. F., & Xu, G. (2018). OsNRT2.4 encodes a dual‐affinity nitrate transporter and functions in nitrate‐regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 69(5), 1095–1107. https://doi.org/10.1093/jxb/erx486.
Winicov, I. (1998). New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 82(6), 703–710. https://doi.org/10.1006/anbo.1998.0731.
Wu, X., Yang, H., Qu, C., Xu, Z., Li, W., Hao, B., Yang, C., Sun, G., & Liu, G. (2015). Sequence and expression analysis of the AMT gene family in poplar. Frontiers in Plant Science, 6, 337. https://doi.org/10.3389/fpls.2015.00337.
Xiong, Z.‐T., Liu, C., & Geng, B. (2006). Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety, 64(3), 273–280. https://doi.org/10.1016/j.ecoenv.2006.02.003.
Xuan, W., Beeckman, T., & Xu, G. (2017). Plant nitrogen nutrition: Sensing and signaling. Current Opinion in Plant Biology, 39, 57–65. https://doi.org/10.1016/j.pbi.2017.05.010.
Yamaya, T., & Oaks, A. (2004). Metabolic regulation of ammonium uptake and assimilation. In S. Amâncio & I. Stulen (Eds.), Nitrogen acquisition and assimilation in higher plants (pp. 35–63). Springer.
Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low‐nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833–7838. https://doi.org/10.1073/pnas.0402267101.
Yang, C. W., Xu, H. H., Wang, L. L., Liu, J., Shi, D. C., & Wang, D. L. (2009). Comparative effects of salt‐stress and alkali‐stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47, 79–86. https://doi.org/10.1007/s11099‐009‐0013‐8.
Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., & Tong, Y. (2019). Reducing expression of a nitrate‐responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal, 17(9), 1823–1833. https://doi.org/10.1111/pbi.13103.
Yong, Z., Kotur, Z., & Glass, A. D. M. (2010). Characterization of an intact two‐component high‐affinity nitrate transporter from Arabidopsis roots. The Plant Journal, 63(5), 739–748. https://doi.org/10.1111/j.1365‐313X.2010.04278.x.
Yu, C. C., Hung, K. T., & Kao, C. H. (2005). Nitric oxide reduces Cu toxicity and Cu‐induced NH4+ accumulation in rice leaves. Journal of Plant Physiology, 162(12), 1319–1330.
Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: An overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86, 1–17. https://doi.org/10.1007/s00128‐010‐0171‐1.
Zaki, S. S. (2016). Effect of compost and nitrogen fertilization on yield and nutrients uptake of rice crop under saline soil. Modern Chemistry and Applications, 4, 183–186. https://doi.org/10.4172/2329‐6798.1000183.
Zhang, H., & Forde, B. G. (1998). An Arabidopsis MADS box gene that controls nutrient‐induced changes in root architecture. Science, 279(5349), 407–409. https://doi.org/10.1126/science.279.5349.407.
Zhao, X. Q., Li, Y. J., Liu, J. Z., Li, B., Liu, Q. Y., Tong, Y. P., & Li, Z. S. (2004). Isolation and expression analysis of a high‐affinity nitrate transporter TaNRT2.3 from roots of wheat. Acta Botanica Sinica, 46(3), 347–354.
Zhong, Y., Yan, W., Chen, J., & Shangguan, Z. (2014). Net ammonium and nitrate fluxes in wheat roots under different environmental conditions as assessed by scanning ion‐selective electrode technique. Scientific Reports, 4(1), 7223. https://doi.org/10.1038/srep07223.
Zhou, G. S. (2015). Research prospect on impact of climate change on agricultural production in China. Meteorological and Environmental Sciences, 38(1), 80–94.
Zhu, L., Liu, X., Liu, X., Jeannotte, R., Reese, J. C., Harris, M., Stuart, J. J., & Chen, M.‐S. (2008). Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat. Molecular Plant‐Microbe Interactions, 21(1), 70–78. https://doi.org/10.1094/MPMI‐21‐1‐0070.
Zuluaga, D. L., & Sonnante, G. (2019). The use of nitrogen and its regulation in cereals: Structural genes, transcription factors, and the role of miRNAs. Plants, 8(8), 294. https://doi.org/10.3390/plants8080294.
معلومات مُعتمدة: 31560122 National Natural Science Foundation of China; 2022YFD2301105-04 National Key R & D Program
المشرفين على المادة: N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20240527 Date Completed: 20240701 Latest Revision: 20240701
رمز التحديث: 20240701
DOI: 10.1002/tpg2.20461
PMID: 38797919
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-3372
DOI:10.1002/tpg2.20461