دورية أكاديمية

Identification of DPP-IV inhibitory peptides derived from buffalo colostrum: Mining through bioinformatics, in silico and in vitro approaches.

التفاصيل البيبلوغرافية
العنوان: Identification of DPP-IV inhibitory peptides derived from buffalo colostrum: Mining through bioinformatics, in silico and in vitro approaches.
المؤلفون: Ashok A; DOS in Biotechnology, University of Mysore, Mysuru, India., H S A; DOS in Biotechnology, University of Mysore, Mysuru, India.
المصدر: Journal of molecular recognition : JMR [J Mol Recognit] 2024 Jul; Vol. 37 (4), pp. e3090. Date of Electronic Publication: 2024 May 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9004580 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1352 (Electronic) Linking ISSN: 09523499 NLM ISO Abbreviation: J Mol Recognit Subsets: MEDLINE
أسماء مطبوعة: Publication: : Chichester, Sussex, UK : John Wiley & Sons
Original Publication: London, UK : Heydon & Son, c1988-
مواضيع طبية MeSH: Buffaloes* , Colostrum*/chemistry , Dipeptidyl-Peptidase IV Inhibitors*/chemistry , Dipeptidyl-Peptidase IV Inhibitors*/pharmacology , Dipeptidyl Peptidase 4*/chemistry , Dipeptidyl Peptidase 4*/metabolism , Molecular Docking Simulation* , Computational Biology* , Peptides*/chemistry , Peptides*/pharmacology, Animals ; Prolyl Oligopeptidases/metabolism ; Prolyl Oligopeptidases/chemistry ; Humans ; Serine Endopeptidases/chemistry ; Serine Endopeptidases/metabolism ; Amino Acid Sequence ; Computer Simulation ; Female
مستخلص: Bioactive peptides derived from foods provide physiological health benefits beyond nutrition. This study focused on profiling small peptide inhibitors against two key serine proteases, dipeptidyl peptidase-IV (DPP-IV) and prolyl oligopeptidase (POP). DPP-IV is a well-known protein involved in diverse pathways regulating inflammation, renal, cardiovascular physiology, and glucose homeostasis. POP is yet another key target protein for neurodegenerative disorders. The study evaluated peptide libraries of buffalo colostrum whey and fat globule membrane proteins derived from pepsin and pepsin-pancreatin digestion through in silico web tools and structure-based analysis by molecular docking and binding free-energy estimation, followed by in vitro assay for DPP-IV inhibition for the lead peptides. The bioinformatic study indicated 49 peptides presented motifs with DPP-IV inhibition while 5 peptides with sequences for POP inhibition. In the molecular docking interactions study, 22 peptides interacted with active site residues of DPP-IV and 3 peptides with that of POP. The synthesized peptides, SFVSEVPEL and LTFQHNF inhibited DPP-IV in vitro with an IC50 of 193.5 μM and 1.782 mM, respectively. The study revealed the key residues for inhibition of DPP-IV and POP thus affirming the DPP-IV inhibitory potential of milk-derived peptides.
(© 2024 John Wiley & Sons Ltd.)
References: Chakrabarti S, Guha S, Majumder K. Food‐derived bioactive peptides in human health: challenges and opportunities. Nutrients. 2018;10(11):1‐17. doi:10.3390/nu10111738.
Manoni M, Di Lorenzo C, Ottoboni M, Tretola M, Pinotti L. Comparative proteomics of Milk fat globule membrane (MFGM) proteome across species and lactation stages and the potentials of MFGM fractions in infant formula preparation. Foods. 2020;9(9):1251. doi:10.3390/foods9091251.
Ji X, Xu W, Cui J, Ma Y, Zhou S. Goat and Buffalo Milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT‐29 cells. Sci Rep. 2019;9(1):2577. doi:10.1038/s41598‐019‐39546‐y.
Li‐Chan EC. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci. 2015;1:28‐37. doi:10.1016/j.cofs.2014.09.005.
Daliri EB‐M, Lee BH, Oh DH. Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr. 2018;58(13):2273‐2284. doi:10.1080/10408398.2017.1319795.
Singh BP, Aluko RE, Hati S, Solanki D. Bioactive peptides in the Management of Lifestyle‐Related Diseases: current trends and future perspectives. Crit Rev Food Sci Nutr. 2022;62(17):4593‐4606. doi:10.1080/10408398.2021.1877109.
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: a comprehensive analysis. BiochimBiophys Acta Gen Subj. 2020;1864(9):129636. doi:10.1016/j.bbagen.2020.129636.
Solerte SB, D'Addio F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID‐19: a multicenter, case‐control, retrospective, observational study. Diabetes Care. 2020;43(12):2999‐3006. doi:10.2337/dc20‐1521.
Babkova K, Korabecny J, Soukup O, Nepovimova E, Jun D, Kuca K. Prolyl Oligopeptidase and its role in the organism: attention to the Most promising and clinically relevant inhibitors. Future Med Chem. 2017;9(10):1015‐1038. doi:10.4155/fmc‐2017‐0030.
Jahandideh F, Wu J. A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Sci Human Wellness. 2022;11(6):1441‐1454. doi:10.1016/j.fshw.2022.06.001.
Ashok A, Brijesha N, Aparna HS. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP‐IV inhibitory activity. Eur J Med Chem. 2019;180:99‐110. doi:10.1016/j.ejmech.2019.07.009.
Ashok NR, Aparna HS. Empirical and bioinformatic characterization of Buffalo (Bubalus Bubalis) Colostrum Whey Peptides & Their Angiotensin I‐converting enzyme inhibition. Food Chem. 2017;228:582‐594. doi:10.1016/j.foodchem.2017.02.032.
Brijesha N, Aparna HS. Comprehensive characterization of bioactive peptides from Buffalo (Bubalus Bubalis) colostrum and Milk fat globule membrane proteins. Food Res Int. 2017;97:95‐103. doi:10.1016/j.foodres.2017.03.037.
Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP‐UWM database of bioactive peptides: current opportunities. Int J Mol Sci. 2019;20(23):5978. doi:10.3390/ijms20235978.
Gupta S, Kapoor P, Chaudhary K, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8(9):e73957. doi:10.1371/journal.pone.0073957.
Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5‐W14. doi:10.1093/nar/gkab255.
Wang F, Sangfuang N, McCoubrey LE, et al. Advancing Oral delivery of biologics: machine learning predicts peptide stability in the gastrointestinal tract. Int J Pharm. 2023;634:122643. doi:10.1016/j.ijpharm.2023.122643.
Calis JJA, Maybeno M, Greenbaum JA, et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol. 2013;9(10):e1003266. doi:10.1371/journal.pcbi.1003266.
Hiramatsu H, Yamamoto A, Kyono K, et al. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with Diprotin a. Biol Chem. 2004;385(6):561‐564. doi:10.1515/BC.2004.068.
Haffner CD, Diaz CJ, Miller AB, et al. Pyrrolidinyl Pyridone and Pyrazinone analogues as potent inhibitors of prolyl Oligopeptidase (POP). Bioorg Med Chem Lett. 2008;18(15):4360‐4363. doi:10.1016/j.bmcl.2008.06.067.
Jimsheena VK, Gowda LR. Arachin derived peptides as selective angiotensin I‐converting enzyme (ACE) inhibitors: structure‐activity relationship. Peptides. 2010;31(6):1165‐1176. doi:10.1016/j.peptides.2010.02.022.
Du Z, Li Y. Review and perspective on bioactive peptides: a roadmap for research, development, and future opportunities. J Agric Food Res. 2022;9:100353. doi:10.1016/j.jafr.2022.100353.
Duan X, Zhang M, Chen F. Prediction and analysis of antimicrobial peptides from rapeseed protein using in silico approach. J Food Biochem. 2021;45(4):e13598. doi:10.1111/jfbc.13598.
Lin K, Zhang L, Han X, et al. Yak Milk casein as potential precursor of angiotensin I‐converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem. 2018;254:340‐347. doi:10.1016/j.foodchem.2018.02.051.
Pooja K, Rani S, Kanwate B, Pal GK. Physico‐chemical, sensory and toxicity characteristics of dipeptidyl peptidase‐IV inhibitory Peptides from Rice bran‐derived globulin using computational approaches. Int J Pept Res Ther. 2017;23(4):519‐529. doi:10.1007/s10989‐017‐9586‐4.
Villadóniga C, Cantera AMB. New ACE‐inhibitory peptides derived from α‐lactalbumin produced by hydrolysis with Bromelia Antiacantha peptidases. Biocatal Agric Biotechnol. 2019;20:101258. doi:10.1016/j.bcab.2019.101258.
Singh PP, Gupta V, Prakash B. Recent advancement in functional properties and toxicity assessment of plant‐derived bioactive peptides using bioinformatic approaches. Crit Rev Food Sci Nutr. 2021;63:1‐19. doi:10.1080/10408398.2021.2002807.
Kęska P, Stadnik J. Structure‐activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chem Biol Drug des. 2020;95(2):291‐301. doi:10.1111/cbdd.13643.
Callaghan R, Gelissen IC, George AM, Hartz AMS. Mamma Mia, P‐glycoprotein binds again. FEBS Lett. 2020;594(23):4076‐4084. doi:10.1002/1873‐3468.13951.
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P‐glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon. 2022;8(6):e09777. doi:10.1016/j.heliyon.2022.e09777.
Qin L, Cui Z, Wu Y, et al. Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharm Res. 2023;40(5):1037‐1055. doi:10.1007/s11095‐022‐03435‐3.
Abbott CA, McCaughan GW, Gorrell MD. Two highly conserved glutamic acid residues in the predicted Beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett. 1999;458(3):278‐284. doi:10.1016/s0014‐5793(99)01166‐7.
Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. BiochemBiophys Res Commun. 2013;434(2):191‐196. doi:10.1016/j.bbrc.2013.03.010.
Sattigeri JA, Sethi S, Davis JA, et al. Approaches towards the development of chimeric DPP4/ACE inhibitors for treating metabolic syndrome. Bioorg Med Chem Lett. 2017;27(11):2313‐2318. doi:10.1016/j.bmcl.2017.04.036.
Rahfeld J, Schierhorn M, Hartrodt B, Neubert K, Heins J. Are Diprotin a (Ile‐pro‐Ile) and Diprotin B (Val‐pro‐leu) inhibitors or substrates of dipeptidyl peptidase IV? BiochimBiophys Acta. 1991;1076(2):314‐316. doi:10.1016/0167‐4838(91)90284‐7.
Gao L, Kumar V, Vellichirammal NN, et al. Functional, proteomic and bioinformatic analyses of Nrf2‐ and Keap1‐null skeletal muscle. J Physiol. 2020;598(23):5427‐5451. doi:10.1113/JP280176.
Nongonierma AB, FitzGerald RJ. Features of dipeptidyl peptidase IV (DPP‐IV) inhibitory peptides from dietary proteins. J Food Biochem. 2019;43(1):e12451. doi:10.1111/jfbc.12451.
Rea D, Hazell C, Andrews NW, Morty RE, Fülöp V. Expression, purification and preliminary crystallographic analysis of Oligopeptidase B from Trypanosoma brucei. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;62(Pt 8):808‐810. doi:10.1107/S1744309106027874.
Polgár L. The prolyl Oligopeptidase family. Cell Mol Life Sci. 2002;59(2):349‐362. doi:10.1007/s00018‐002‐8427‐5.
Szeltner Z, Polgár L. Structure, function and biological relevance of prolyl Oligopeptidase. Curr Protein Pept Sci. 2008;9(1):96‐107. doi:10.2174/138920308783565723.
Sobolova K, Hrabinova M, Hepnarova V, et al. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl Oligopeptidase inhibition profile. Eur J Med Chem. 2020;203:112593. doi:10.1016/j.ejmech.2020.112593.
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl Oligopeptidase and the Procognitive potential of its Peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr. 2023;1‐14. doi:10.1080/10408398.2023.2170973.
Kulkarni AM, Rampogu S, Lee KW. Computer‐aided drug discovery identifies alkaloid inhibitors of Parkinson's disease associated protein, prolyl Oligopeptidase. Evid Based Complement Alternat Med. 2021;2021:e6687572. doi:10.1155/2021/6687572.
Shrivastava A, Srivastava S, Malik R, Alam MM, Shaqiquzamman M, Akhter M. Identification of novel small molecule non‐peptidomimetic inhibitor for prolyl Oligopeptidase through in silico and in vitro approaches. J Biomol Struct Dyn. 2020;38(5):1292‐1305. doi:10.1080/07391102.2019.1602078.
Korhonen H. Milk‐derived bioactive peptides: from science to applications. J Funct Foods. 2009;1(2):177‐187. doi:10.1016/j.jff.2009.01.007.
Rendón‐Rosales MÁ, Torres‐Llanez MJ, Mazorra‐Manzano MA, González‐Córdova AF, Hernández‐Mendoza A, Vallejo‐Cordoba B. Vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with lactococcus lactis NRRL B‐50571 and NRRL B‐50572. LWT. 2022;154:112581. doi:10.1016/j.lwt.2021.112581.
Thakur S, Chhimwal J, Joshi R, Kumari M, Padwad Y, Kumar R. Evaluating peptides of Picrorhiza Kurroa and their inhibitory potential against ACE, DPP‐IV, and oxidative stress. J Proteome Res. 2021;20(8):3798‐3813. doi:10.1021/acs.jproteome.1c00081.
Ashok NR. Characterization of Bioactive Peptides from Buffalo Bubalus Bubalis Colostrum. University of Mysore; 2019.
Hrynkiewicz M, Iwaniak A, Minkiewicz P, Darewicz M, Płonka W. Analysis of structure–activity relationships of food‐derived DPP IV‐inhibitory Di‐ and tripeptides using interpretable descriptors. Appl Sci. 2023;13(23):12935. doi:10.3390/app132312935.
Xiang X, Lang M, Li Y, et al. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus Vannamei) head. J Chromatogr B AnalytTechnol Biomed Life Sci. 2021;1186:122990. doi:10.1016/j.jchromb.2021.122990.
Bracke A, De Hert E, De Bruyn M, et al. Proline‐specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID‐19 patients. Clin Chim Acta. 2022;531:4‐11. doi:10.1016/j.cca.2022.03.005.
Kichik N, Tarragó T, Giralt E. Simultaneous 19F NMR screening of prolyl Oligopeptidase and dipeptidyl peptidase IV inhibitors. Chembiochem. 2010;11(8):1115‐1119. doi:10.1002/cbic.201000019.
معلومات مُعتمدة: Karnataka Science and Technology Promotion Society; Indian Council of Medical Research; Science and Engineering Research Board
فهرسة مساهمة: Keywords: DPP‐IV; bioactive peptides; diabetes; dipeptidyl peptidase; milk peptides
المشرفين على المادة: 0 (Dipeptidyl-Peptidase IV Inhibitors)
EC 3.4.14.5 (Dipeptidyl Peptidase 4)
0 (Peptides)
EC 3.4.21.26 (Prolyl Oligopeptidases)
EC 3.4.21.- (Serine Endopeptidases)
تواريخ الأحداث: Date Created: 20240528 Date Completed: 20240618 Latest Revision: 20240618
رمز التحديث: 20240619
DOI: 10.1002/jmr.3090
PMID: 38803118
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1352
DOI:10.1002/jmr.3090