دورية أكاديمية

Varicella zoster virus-induced autophagy in human neuronal and hematopoietic cells exerts antiviral activity.

التفاصيل البيبلوغرافية
العنوان: Varicella zoster virus-induced autophagy in human neuronal and hematopoietic cells exerts antiviral activity.
المؤلفون: Heinz JL; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark., Hinke DM; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark., Maimaitili M; Department of Biomedicine, Aarhus University, Aarhus, Denmark., Wang J; Institute of Virology, Hannover Medical School, Hannover, Germany., Sabli IKD; Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK.; Centre for Paediatrics and Child Health, Imperial College London, London, UK., Thomsen M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark., Farahani E; Department of Biomedicine, Aarhus University, Aarhus, Denmark., Ren F; Department of Biomedicine, Aarhus University, Aarhus, Denmark., Hu L; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark., Zillinger T; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, Bonn, Germany., Grahn A; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden., von Hofsten J; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.; Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden., Verjans GMGM; Department of Viroscience, HerpeslabNL, Erasmus University MC, Rotterdam, The Netherlands., Paludan SR; Department of Biomedicine, Aarhus University, Aarhus, Denmark., Viejo-Borbolla A; Institute of Virology, Hannover Medical School, Hannover, Germany.; Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany., Sancho-Shimizu V; Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK.; Centre for Paediatrics and Child Health, Imperial College London, London, UK., Mogensen TH; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
المصدر: Journal of medical virology [J Med Virol] 2024 Jun; Vol. 96 (6), pp. e29690.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Wiley-Liss
Original Publication: New York, Liss.
مواضيع طبية MeSH: Autophagy* , Herpesvirus 3, Human*/physiology , Herpesvirus 3, Human*/pathogenicity , Neurons*/virology, Humans ; Autophagy-Related Protein-1 Homolog/metabolism ; Autophagy-Related Protein-1 Homolog/genetics ; Virus Replication ; Microtubule-Associated Proteins/genetics ; Microtubule-Associated Proteins/metabolism ; Varicella Zoster Virus Infection/virology ; Viral Envelope Proteins/genetics ; Viral Envelope Proteins/metabolism ; Cell Line ; Intracellular Signaling Peptides and Proteins/metabolism ; Intracellular Signaling Peptides and Proteins/genetics ; Host-Pathogen Interactions
مستخلص: Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.
(© 2024 The Author(s). Journal of Medical Virology published by Wiley Periodicals LLC.)
References: de Duve C. The lysosome. Sci Am. 1963;208:64‐73. doi:10.1038/scientificamerican0563-64.
de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435‐492. doi:10.1146/annurev.ph.28.030166.002251.
Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nature Cell Biol. 2018;20(5):521‐527. doi:10.1038/s41556-018-0092-5.
Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin‐like system mediates protein lipidation. Nature. 2000;408(6811):488‐492. doi:10.1038/35044114.
Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy. Nature. 1998;395(6700):395‐398. doi:10.1038/26506.
Popelka H, Klionsky DJ. Autophagic structures revealed by cryo‐electron tomography: new clues about autophagosome biogenesis. Autophagy. 2023;19(5):1375‐1377. doi:10.1080/15548627.2023.2175305.
Wu Z, Zhou C, Que H, Wang Y, Rong Y. The fate of autophagosomal membrane components. Autophagy. 2023;19(1):370‐371. doi:10.1080/15548627.2022.2083807.
Ericsson JLE. Studies on induced cellular autophagy. Exp Cell Res. 1969;55(1):95‐106. doi:10.1016/0014-4827(69)90462-5.
Klionsky DJ, Abdel‐Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 2021;17(1):1‐382. doi:10.1080/15548627.2020.1797280.
Berg TO, Fengsrud M, Strømhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. J Biol Chem. 1998;273(34):21883‐21892. doi:10.1074/jbc.273.34.21883.
Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988;151(1):40‐47. doi:10.1016/0006-291x(88)90556-6.
Szatmári Z, Kis V, Lippai M, et al. Rab11 facilitates cross‐talk between autophagy and endosomal pathway through regulation of hook localization. Mol Biol Cell. 2014;25(4):522‐531. doi:10.1091/mbc.E13-10-0574.
Takahashi S, Kubo K, Waguri S, et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci. 2012;125(Pt 17):4049‐4057. doi:10.1242/jcs.102913.
Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell. 2019;176(1‐2):11‐42. doi:10.1016/j.cell.2018.09.048.
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27‐42. doi:10.1016/j.cell.2007.12.018.
Shintani T, Klionsky DJ. Autophagy in health and disease: a double‐edged sword. Science. 2004;306(5698):990‐995. doi:10.1126/science.1099993.
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self‐digestion. Nature. 2008;451(7182):1069‐1075. doi:10.1038/nature06639.
Chen M, Hong MJ, Sun H, et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nature Med. 2014;20(5):503‐510. doi:10.1038/nm.3521.
de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science. 2005;307(5710):724‐727. doi:10.1126/science.1105103.
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753‐766. doi:10.1016/j.cell.2004.11.038.
Choi Y, Bowman JW, Jung JU. Autophagy during viral infection ‐ a double‐edged sword. Nat Rev Microbiol. 2018;16(6):341‐354. doi:10.1038/s41579-018-0003-6.
Cavignac Y, Esclatine A. Herpesviruses and autophagy: catch me if you can. Viruses. 2010;2(1):314‐333. doi:10.3390/v2010314.
Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunol. 2011;12(3):222‐230. doi:10.1038/ni.1980.
Prabakaran T, Bodda C, Krapp C, et al. Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1. EMBO J. 2018;37(8):e97858. doi:10.15252/embj.201797858.
Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species‐dependent amplification of RLR signaling. Proceedings of the National Academy of Sciences. 2009;106(8):2770‐2775. doi:10.1073/pnas.0807694106.
Lussignol M, Esclatine A. Herpesvirus and autophagy: “all right, everybody be cool, this is a robbery!”. Viruses. 2017;9(12):372. doi:10.3390/v9120372.
Kirkegaard K. Subversion of the cellular autophagy pathway by viruses. Curr Top Microbiol Immunol. 2009;335:323‐333. doi:10.1007/978-3-642-00302-8_16.
Jackson WT, Giddings TH, Taylor MP, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 2005;3(5):e156. doi:10.1371/journal.pbio.0030156.
Sir D, Chen W, Choi J, Wakita T, Yen TSB, Ou HJ. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 2008;48(4):1054‐1061. doi:10.1002/hep.22464.
Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proceedings of the National Academy of Sciences. 2009;106(33):14046‐14051. doi:10.1073/pnas.0907344106.
Takahashi M, Jackson W, Laird DT, et al. Varicella‐zoster virus infection induces autophagy in both cultured cells and human skin vesicles. J Virol. 2009;83(11):5466‐5476. doi:10.1128/JVI.02670-08.
Buckingham EM, Carpenter JE, Jackson W, Grose C. Autophagy and the effects of its inhibition on varicella‐zoster virus glycoprotein biosynthesis and infectivity. J Virol. 2014;88(2):890‐902. doi:10.1128/JVI.02646-13.
Girsch JH, Jackson W, Carpenter JE, Moninger TO, Jarosinski KW, Grose C. Exocytosis of progeny infectious Varicella‐Zoster virus particles via a Mannose‐6‐Phosphate receptor pathway without xenophagy following secondary envelopment. J Virol. 2020;94(16):e00800‐20. doi:10.1128/JVI.00800-20.
Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nat Rev Dis Primers. 2015;1:15016. doi:10.1038/nrdp.2015.16.
Kennedy PGE, Grinfeld E, Gow JW. Latent varicella‐zoster virus is located predominantly in neurons in human trigeminal ganglia. Proceedings of the National Academy of Sciences. 1998;95(8):4658‐4662. doi:10.1073/pnas.95.8.4658.
Rovnak J, Kennedy PGE, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella‐zoster virus latency and reactivation. J Gen Virol. 2015;96(Pt 7):1581‐1602. doi:10.1099/vir.0.000128.
Kennedy P, Gershon A. Clinical features of Varicella‐Zoster virus infection. Viruses. 2018;10(11):609. doi:10.3390/v10110609.
Nagel MA, Gilden DH. The protean neurologic manifestations of varicella‐zoster virus infection. Cleve Clin J Med. 2007;74(7):489‐494. 496, 498‐9 passim. doi:10.3949/ccjm.74.7.489.
Kennedy PGE. The spectrum of neurological manifestations of Varicella‐Zoster virus reactivation. Viruses. 2023;15(8):1663. doi:10.3390/v15081663.
Grahn A, Studahl M. Varicella‐zoster virus infections of the central nervous system – prognosis, diagnostics and treatment. J Infect. 2015;71(3):281‐293. doi:10.1016/j.jinf.2015.06.004.
Muthiah MN, Michaelides M, Child CS, Mitchell SM. Acute retinal necrosis: a national population‐based study to assess the incidence, methods of diagnosis, treatment strategies and outcomes in the UK. Br J Ophthalmol. 2007;91(11):1452‐1455. doi:10.1136/bjo.2007.114884.
Kleinschmidt‐DeMasters BK, Gilden DH. Varicella‐Zoster virus infections of the nervous system. Arch Pathol Lab Med. 2001;125(6):770‐780. doi:10.5858/2001-125-0770-VZVIOT.
Iwahashi‐Shima C, Azumi A, Ohguro N, et al. Acute retinal necrosis: factors associated with anatomic and visual outcomes. Jpn J Ophthalmol. 2013;57(1):98‐103. doi:10.1007/s10384-012-0211-y.
Herlin LK, Hansen KS, Bodilsen J, et al. Varicella zoster virus encephalitis in Denmark from 2015 to 2019‐A nationwide prospective cohort study. Clin Infect Dis. 2021;72(7):1192‐1199. doi:10.1093/cid/ciaa185.
Kennedy PG, Mogensen TH. Determinants of neurological syndromes caused by varicella zoster virus (VZV. J Neurovirol. 2020;26(4):482‐495. doi:10.1007/s13365-020-00857-w.
Jouanguy E, Béziat V, Mogensen TH, Casanova J‐L, Tangye SG, Zhang S‐Y. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. 2020;62:106‐122. doi:10.1016/j.coi.2020.01.004.
Thomsen MM, Tyrberg T, Skaalum K, et al. Genetic variants and immune responses in a cohort of patients with varicella zoster virus encephalitis. J Infect Dis. 2021;224(12):2122‐2132. doi:10.1093/infdis/jiab254.
Heinz JL, Swagemakers SMA, von Hofsten J, et al. Whole exome sequencing of patients with varicella‐zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease‐associated genetic variants. Front Mol Neurosci. 2023;16:1253040. doi:10.3389/fnmol.2023.1253040.
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genet. 2014;46(3):310‐315. doi:10.1038/ng.2892.
Itan Y, Shang L, Boisson B, et al. The mutation significance cutoff: gene‐level thresholds for variant predictions. Nature Methods. 2016;13(2):109‐110. doi:10.1038/nmeth.3739.
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein‐protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447‐D452. doi:10.1093/nar/gku1003.
Zhang P, Bigio B, Rapaport F, et al. PopViz: a webserver for visualizing minor allele frequencies and damage prediction scores of human genetic variations. Bioinformatics. 2018;34(24):4307‐4309. doi:10.1093/bioinformatics/bty536.
Brinck Andersen N‐S, Jørgensen SE, Skipper KA, et al. Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy. 2021;17(9):2449‐2464. doi:10.1080/15548627.2020.1831800.
Sloutskin A, Goldstein RS. Laboratory preparation of Varicella‐Zoster virus: concentration of virus‐containing supernatant, use of a debris fraction and magnetofection for consistent cell‐free VZV infections. J Virol Methods. 2014;206:128‐132. doi:10.1016/j.jviromet.2014.05.027.
Farahani E, Reinert LS, Narita R, et al. The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation. Cell Rep. 2024;43(2):113792. doi:10.1016/j.celrep.2024.113792.
Christensen J, Steain M, Slobedman B, Abendroth A. Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella‐zoster virus infection of neuronal cells. J Virol. 2011;85(16):8436‐8442. doi:10.1128/JVI.00515-11.
Maimaitili M, Chen M, Febbraro F, et al. Enhanced production of mesencephalic dopaminergic neurons from lineage‐restricted human undifferentiated stem cells. Nat Commun. 2023;14(1):7871. doi:10.1038/s41467-023-43471-0.
Andersen LL, Mørk N, Reinert LS, et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med. 2015;212(9):1371‐1379. doi:10.1084/jem.20142274.
Stirling DR, Swain‐Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 2021;22(1):433. doi:10.1186/s12859-021-04344-9.
Taft J, Markson M, Legarda D, et al. Human TBK1 deficiency leads to autoinflammation driven by TNF‐induced cell death. Cell. 2021;184(17):4447‐4463.e20. doi:10.1016/j.cell.2021.07.026.
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671‐675. doi:10.1038/nmeth.2089.
Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213‐232. doi:10.1111/j.1365-2818.2006.01706.x.
Beránková Z, Kopecký J, Kobayashi S, Lieskovská J. Dual control of tick‐borne encephalitis virus replication by autophagy in mouse macrophages. Virus Res. 2022;315:198778. doi:10.1016/j.virusres.2022.198778.
Kennedy JJ, Steain M, Slobedman B, Abendroth A. Infection and functional modulation of human monocytes and macrophages by Varicella‐Zoster virus. J Virol. 2019;93(3):e01887‐18. doi:10.1128/JVI.01887-18.
Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology‐Cell Physiology. 2011;300(4):C723‐C742. doi:10.1152/ajpcell.00462.2010.
Manders EMM, Verbeek FJ, Aten JA. Measurement of co‐localization of objects in dual‐colour confocal images. J Microsc. 1993;169(3):375‐382. doi:10.1111/j.1365-2818.1993.tb03313.x.
Azarkh Y, Dölken L, Nagel M, Gilden D, Cohrs RJ. Synthesis and decay of varicella zoster virus transcripts. J Neurovirol. 2011;17(3):281‐287. doi:10.1007/s13365-011-0029-2.
Braspenning SE, Sadaoka T, Breuer J, Verjans GMGM, Ouwendijk WJD, Depledge DP. Decoding the architecture of the Varicella‐Zoster virus transcriptome. mBio. 2020;11(5):e01568‐20. doi:10.1128/mBio.01568-20.
Inoue N, Matsushita M, Fukui Y, et al. Identification of a varicella‐zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol. 2012;86(22):12198‐12207. doi:10.1128/JVI.01280-12.
Baiker A, Bagowski C, Ito H, et al. The immediate‐early 63 protein of Varicella‐Zoster virus: analysis of functional domains required for replication in vitro and for t‐cell and skin tropism in the SCIDhu model in vivo. J Virol. 2004;78(3):1181‐1194. doi:10.1128/jvi.78.3.1181-1194.2004.
Abendroth A, Morrow G, Cunningham AL, Slobedman B. Varicella‐zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol. 2001;75(13):6183‐6192. doi:10.1128/JVI.75.13.6183-6192.2001.
Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61(6):585‐596. doi:10.1042/EBC20170021.
Hait AS, Olagnier D, Sancho‐Shimizu V, et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Science Immunology. 2020;5(54):eabc2691. doi:10.1126/sciimmunol.abc2691.
Graybill C, Morgan MJ, Levin MJ, Lee KS. Varicella‐zoster virus inhibits autophagosome‐lysosome fusion and the degradation stage of mTOR‐mediated autophagic flux. Virology. 2018;522:220‐227. doi:10.1016/j.virol.2018.07.018.
Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome formation during varicella‐zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol. 2011;85(18):9414‐9424. doi:10.1128/JVI.00281-11.
Buckingham EM, Carpenter JE, Jackson W, Zerboni L, Arvin AM, Grose C. Autophagic flux without a block differentiates varicella‐zoster virus infection from herpes simplex virus infection. Proceedings of the National Academy of Sciences. 2015;112(1):256‐261. doi:10.1073/pnas.1417878112.
Carpenter JE, Grose C. Varicella‐zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells. Front Microbiol. 2014;5:322. doi:10.3389/fmicb.2014.00322.
Oh S‐J, Yu J‐W, Ahn J‐H, et al. Varicella zoster virus glycoprotein E facilitates PINK1/Parkin‐mediated mitophagy to evade STING and MAVS‐mediated antiviral innate immunity. Cell Death Dis. 2024;15(1):16. doi:10.1038/s41419-023-06400-z.
Lennemann NJ, Coyne CB. Catch me if you can: the link between autophagy and viruses. PLoS Pathog. 2015;11(3):e1004685. doi:10.1371/journal.ppat.1004685.
Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol. 2007;81(22):12128‐12134. doi:10.1128/JVI.01356-07.
Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. A neuron‐specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe. 2012;12(3):334‐345. doi:10.1016/j.chom.2012.07.013.
Stavoe AKH, Holzbaur ELF. Axonal autophagy: mini‐review for autophagy in the CNS. Neurosci Lett. 2019;697:17‐23. doi:10.1016/j.neulet.2018.03.025.
Gonzalez Porras MA, Sieck GC, Mantilla CB. Impaired autophagy in motor neurons: a final common mechanism of injury and death. Physiology. 2018;33(3):211‐224. doi:10.1152/physiol.00008.2018.
Borsa M, Obba S, Richter FC, et al. Autophagy preserves hematopoietic stem cells by restraining MTORC1‐mediated cellular anabolism. Autophagy. 2023;20:45‐57. doi:10.1080/15548627.2023.2247310.
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation ofautophagy‐relatedgenes: implications for neurodevelopmental disorders. Autophagy. 2023;20:15‐28. doi:10.1080/15548627.2023.2250217.
Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032‐1036. doi:10.1038/nature03029.
Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009;8(8):731‐740. doi:10.1016/S1474-4422(09)70134-6.
معلومات مُعتمدة: 4004-00047B Danmarks Frie Forskningsfond; NNF21OC0067157 Novo Nordisk research foundation; NNF20OC0063436 Novo Nordisk research foundation; DNRF164 Danmarks Grundforskningsfond; R268-3927 Lundbeck Foundation; 39087480 Deutsche forschungsgemeinschaft
فهرسة مساهمة: Keywords: CNS infection; acute retinal necrosis; autophagy; innate immunity; varicella zoster virus
المشرفين على المادة: EC 2.7.11.1 (Autophagy-Related Protein-1 Homolog)
EC 2.7.11.1 (ULK1 protein, human)
0 (Microtubule-Associated Proteins)
0 (Viral Envelope Proteins)
0 (MAP1LC3B protein, human)
0 (glycoprotein E, varicella-zoster virus)
0 (Intracellular Signaling Peptides and Proteins)
تواريخ الأحداث: Date Created: 20240528 Date Completed: 20240528 Latest Revision: 20240528
رمز التحديث: 20240528
DOI: 10.1002/jmv.29690
PMID: 38804180
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9071
DOI:10.1002/jmv.29690