دورية أكاديمية

Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities.

التفاصيل البيبلوغرافية
العنوان: Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities.
المؤلفون: Shahbaz M; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia. muhammad_shabaz_dx22@iluv.ums.edu.my., Palaniveloo K; Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.; Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia., Tan YS; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.; Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia., Palasuberniam P; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Sabah, Malaysia., Ilyas N; Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan., Wiart C; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia., Seelan JSS; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia. seelan80@ums.edu.my.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2024 May 29; Vol. 40 (7), pp. 217. Date of Electronic Publication: 2024 May 29.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Crops, Agricultural*/parasitology , Fungi*/metabolism , Insecta*/microbiology , Pest Control, Biological*, Animals ; Beauveria/metabolism ; Biological Control Agents/metabolism ; Cordyceps/metabolism ; Crop Protection/methods ; Metarhizium/metabolism ; Plant Diseases/parasitology ; Plant Diseases/prevention & control ; Secondary Metabolism
مستخلص: Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abd El-Wahab ASED, Nada MS, El- MA, Galal A, Amin HA (2023) Effect of the entomopathogenic fungus, Beauveria bassiana inhibiting whitefly transmission of squash leaf curl virus infecting squash. Egypt J Biol Pest Control 33(1):64. https://doi.org/10.1186/s41938-023-00694. (PMID: 10.1186/s41938-023-00694)
Abdellaoui K, Miladi M, Mkhinini M, Boughattas I, Hamouda AB, Hajji-Hedfi L, Acheuk F (2020) The aggregation pheromone phenylacetonitrile: joint action with the entomopathogenic fungus Metarhizium anisopliae var. acridum and physiological and transcriptomic effects on Schistocerca gregaria nymphs. Pesticide Biochem Physiol 167:104594. (PMID: 10.1016/j.pestbp.2020.104594)
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM (2023) Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. Plant Physiol Biochem 198:107673. (PMID: 3703024910.1016/j.plaphy.2023.107673)
Ahsan H, Islam SU, Ahmed MB, Lee YS, Sonn JK (2020) Significance of green synthetic chemistry from a pharmaceutical perspective. Curr Pharm Des 26(45):5767–5782. (PMID: 3298834610.2174/1381612826666200928160851)
Ajvad FT, Madadi H, Michaud JP, Zafari D, Khanjani M (2020) Combined applications of an entomopathogenic fungus and a predatory mite to control fungus gnats (Diptera: Sciaridae) in mushroom production. Biol Control 141:104101. https://doi.org/10.1016/j.biocontrol.2019.104101. (PMID: 10.1016/j.biocontrol.2019.104101)
Akram S, Ahmed A, He P, He P, Liu Y, Wu Y, He Y (2023) Uniting the role of endophytic fungi against plant pathogens and their interaction. J Fungus 9(1):72. https://doi.org/10.3390/jof9010072. (PMID: 10.3390/jof9010072)
Al Khoury C, Nemer N, Bernigaud C, Fischer K, Guillot J (2021) First evidence of the activity of an entomopathogenic fungus against the eggs of Sarcoptes scabiei. Vet Parasitol 298:109553. (PMID: 3438842210.1016/j.vetpar.2021.109553)
Al Khoury C, Bashir Z, Tokajian S, Nemer N, Merhi G, Nemer G (2022) In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Comput Biol Med 141:105171. https://doi.org/10.1016/j.compbiomed.2021.105171. (PMID: 10.1016/j.compbiomed.2021.10517134968860)
Altinok HH, Altinok MA, Koca AS (2019) Modes of action of entomopathogenic fungi. Curr Trends Nat Sci 8(16):117–124.
Alves EA, Schmaltz S, Tres MV, Zabot GL, Kuhn RC, Mazutti MA (2020) Process development to obtain a cocktail containing cell-wall degrading enzymes with insecticidal activity from Beauveria bassiana. Biochem Eng J 156:107484. https://doi.org/10.1016/j.bej.2019.107484. (PMID: 10.1016/j.bej.2019.107484)
Amobonye A, Bhagwat P, Singh S, Pillai S (2021) Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte. Fungal Biol 125(1):39–48. https://doi.org/10.1016/j.funbio.2020.10.003. (PMID: 10.1016/j.funbio.2020.10.00333317775)
Andrioli WJ, Lopes AA, Cavalcanti BC, Pessoa C, Nanayakkara NPD, Bastos JK (2017) Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana. Nat Prod Res 31(16):1920–1929. https://doi.org/10.1080/14786419.2016.1269091. (PMID: 10.1080/14786419.2016.126909128032511)
Arunthirumeni M, Vinitha G, Shivakumar MS (2023) Antifeedant and larvicidal activity of bioactive compounds isolated from entomopathogenic fungi Penicillium sp. for the control of agricultural and medically important insect pest (Spodoptera litura and Culex quinquefasciatus). Parasitol Int 92:102688. (PMID: 3622896910.1016/j.parint.2022.102688)
Awan UA, Xia S, Meng L, Raza MF, Zhang Z, Zhang H (2021) Isolation, characterization, culturing, and formulation of a new Beauveria bassiana fungus against Diaphorina citri. Biol Control 158:104586. (PMID: 10.1016/j.biocontrol.2021.104586)
Ayudya DR, Herlinda S, Suwandi S (2019) Insecticidal activity of culture filtrates from liquid medium of Beauveria bassiana isolates from South Sumatra (Indonesia) wetland soil against larvae of Spodoptera litura. Biodiversitas J Biol Diversity. https://doi.org/10.13057/biodiv/d200802. (PMID: 10.13057/biodiv/d200802)
Baja F, Poitevin CG, Araujo ES, Mirás-Avalos JM, Zawadneak MA, Pimentel IC (2020) Infection of Beauveria bassiana and Cordyceps javanica on different immature stages of Duponchelia fovealis Zeller (Lepidoptera: Crambidae). Crop Prot 138:105347. https://doi.org/10.1016/j.cropro.2020.105347. (PMID: 10.1016/j.cropro.2020.105347)
Bamisile BS, Siddiqui JA, Akutse KS, Ramos Aguila LC, Xu Y (2021) General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 10(10):2119. (PMID: 34685928854063510.3390/plants10102119)
Batool, R., Umer, M. J., Wang, Y., He, K., Zhang, T., Bai, S., Wang, Z. 2020. Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian corn borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. Int. J Mol Sci. 21(21), 8215. https://doi.org/10.3390/ijms21218215 .
Bava R, Castagna F, Piras C, Musolino V, Lupia C, Palma E, Musella V (2022) Entomopathogenic fungi for pests and predators’ control in beekeeping. Vet Sci 9(2):95. https://doi.org/10.3390/vetsci9020095. (PMID: 10.3390/vetsci9020095352023488875931)
Bayman P, Mariño YA, García-Rodríguez NM, Oduardo-Sierra OF, Rehner SA (2021) Local isolates of Beauveria bassiana for control of the coffee berry borer Hypothenemus hampei in Puerto rico: virulence, efficacy and persistence. Biol Control 155:104533. https://doi.org/10.1016/j.biocontrol.2021.104533. (PMID: 10.1016/j.biocontrol.2021.104533)
Bhadani RV, Gajera HP, Hirpara DG, Kachhadiya HJ, Dave RA (2021) Metabolomics of extracellular compounds and parasitic enzymes of Beauveria bassiana associated with biological control of whiteflies (Bemisia tabaci). Pestic Biochem Phys 176:104877. https://doi.org/10.1016/j.pestbp.2021.104877. (PMID: 10.1016/j.pestbp.2021.104877)
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Abd-Elsalam KA (2023) Entomopathogenic fungi: an eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 11(6):1617. https://doi.org/10.3390/microorganisms11061617. (PMID: 10.3390/microorganisms110616173737511910302739)
Bitencourt RDOB, dos Santos Mallet JR, Mesquita E, Gôlo PS, Fiorotti J, Bittencourt VREP, da Costa Angelo I (2021) Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Trop 213:105732. https://doi.org/10.1016/j.actatropica.2020.105732. (PMID: 10.1016/j.actatropica.2020.105732)
Bitencourt RDOB, de Souza Faria F, Marchesini P, dos Santos-Mallet JR, Camargo MG, Bittencourt VREP, da Costa Angelo I (2022) Entomopathogenic fungi and Schinus molle essential oil: the combination of two eco-friendly agents against Aedes aegypti larvae. J Invertebr Pathol 194:107827. https://doi.org/10.1016/j.jip.2022.107827. (PMID: 10.1016/j.jip.2022.107827)
Boguś MI, Czygier M, Gołębiowski M, Kędra E, Kucińska J, Mazgajska J, Włóka E (2010) Effects of insect cuticular fatty acids on in vitro growth and pathogenicity of the entomopathogenic fungus Conidiobolus coronatus. Exp Parasitol 125(4):400–408. (PMID: 2038512910.1016/j.exppara.2010.04.001)
Boni SB, Mwashimaha RA, Mlowe N, Sotelo-Cardona P, Nordey T (2021) Efficacy of indigenous entomopathogenic fungi against the black aphid, Aphis fabae Scopoli under controlled conditions in Tanzania. Int J Trop Insect Sci 41:1643–1651. https://doi.org/10.1007/s42690-020-00365-8. (PMID: 10.1007/s42690-020-00365-8)
Bordalo MD, Gravato C, Beleza S, Campos D, Lopes I, Pestana JLT (2020) Lethal and sublethal toxicity assessment of Bacillus thuringiensis var. israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. Sci. Total Environ. 698:134155. https://doi.org/10.1016/j.scitotenv.2019.134155. (PMID: 10.1016/j.scitotenv.2019.13415531505347)
Branine M, Bazzicalupo A, Branco S (2019) Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog 15(7):e1007831. https://doi.org/10.1371/journal.ppat.1007831. (PMID: 10.1371/journal.ppat.1007831313189596638973)
Cafarchia C, Pellegrino R, Romano V, Friuli M, Demitri C, Pombi M, Otranto D (2022) Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop. https://doi.org/10.1016/j.actatropica.2022.106627. (PMID: 10.1016/j.actatropica.2022.10662735914564)
Canassa F, Tall S, Moral RA, de Lara IA, Delalibera I Jr, Meyling NV (2019) Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biol Control 132:199–208. https://doi.org/10.1016/j.biocontrol.2019.02.003. (PMID: 10.1016/j.biocontrol.2019.02.003)
Carollo CA, Calil ALA, Schiave LA, Guaratini T, Roberts DW, Lopes NP, Braga GU (2010) Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biol 114(5–6):473–480. (PMID: 2094315810.1016/j.funbio.2010.03.009)
Chairin T, Petcharat V (2017) Induction of defense responses in longkong fruit (Aglaia dookkoo Griff.) against fruit rot fungi by Metarhizium guizhouense. Biol Control 111:40–44. https://doi.org/10.1016/j.biocontrol.2017.05.012. (PMID: 10.1016/j.biocontrol.2017.05.012)
Chen W, Modi D, Picot A (2023) Soil and phytomicrobiome for plant disease suppression and management under climate change: a review. Plants 12(14):2736. https://doi.org/10.3390/plants12142736. (PMID: 10.3390/plants121427363751435010384710)
Coutinho-Rodrigues CJB, da Rosa RL, de Freitas MC, Fiorotti J, Berger M, Santi L, Bittencourt VREP (2021) Exposure to a sublethal menadione concentration modifies the mycelial secretome and conidial enzyme activities of Metarhizium anisopliae sensu lato and increases its virulence against Rhipicephalus microplus. Microbiol Res 248:126753. https://doi.org/10.1016/j.micres.2021.126753. (PMID: 10.1016/j.micres.2021.12675333882376)
Crespo R, Pedrini N, Juárez MP, Dal Bello GM (2008) Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163(2):148–151. https://doi.org/10.1016/j.micres.2006.03.013. (PMID: 10.1016/j.micres.2006.03.01316733086)
Da Costa Stuart AK, Furuie JL, Zawadneak MAC, Pimentel IC (2020) Increased mortality of the European pepper moth Duponchelia fovealis (Lepidoptera: Crambidae) using entomopathogenic fungal consortia. J Invertebr Pathol 177:107503. https://doi.org/10.1016/j.jip.2020.107503. (PMID: 10.1016/j.jip.2020.107503)
Da Rocha IU, Bitencourt RDOB, de Moraes Freitas A, Moreira HVS, de Amorim Magalhães KL, Augusto B, da Costa Angelo I (2024) Exploiting the combination of entomopathogenic fungi and Illicium verum essential oil against Aedes aegypti larvae. Biol Control 193:105526. (PMID: 10.1016/j.biocontrol.2024.105526)
de Freitas GS, de Araújo Lira V, Jumbo LOV, dos Santos FJ, Rêgo AS, Teodoro AV (2021) The potential of Beauveria bassiana to control Raoiella indica (Acari: Tenuipalpidae) and its compatibility with predatory mites. Crop Prot 149:105776. https://doi.org/10.1016/j.cropro.2021.105776. (PMID: 10.1016/j.cropro.2021.105776)
Diao H, Xing P, Tian J, Han Z, Wang D, Xiang H, Ma R (2022) Toxicity of crude toxin protein produced by Cordyceps fumosorosea IF-1106 against Myzus persicae (Sulze). J Invertebr Pathol 194:107825. https://doi.org/10.1016/j.jip.2022.107825. (PMID: 10.1016/j.jip.2022.10782536096179)
Ding BY, Niu J, Shang F, Yang L, Zhang W, Smagghe G, Wang JJ (2020) Parental silencing of a horizontally transferred carotenoid desaturase gene causes a reduction of red pigment and fitness in the pea aphid. Pest Manag Sci 76(7):2423–2433. (PMID: 3205636710.1002/ps.5783)
Durán-Aranguren D, Chiriví-Salomón JS, Anaya L, Durán-Sequeda D, Cruz LJ, Serrano JD, Sierra R (2020) Effect of bioactive compounds extracted from Cordyceps nidus ANDES-F1080 on laccase activity of Pleurotus ostreatus ANDES-F515. Biotechnol Rep 26:e00466. https://doi.org/10.1016/j.btre.2020.e00466. (PMID: 10.1016/j.btre.2020.e00466)
Eski A, Biryol S, Acici O, Demir İ (2022) Biocontrol of the western conifer seed bug, Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) using indigenous entomopathogenic fungi. Egyptian J Biol Pest Control 32(1):140. (PMID: 10.1186/s41938-022-00641-4)
Espinoza F, Vidal S, Rautenbach F, Lewu F, Nchu F (2019) Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon. https://doi.org/10.1016/j.heliyon.2019.e03038. (PMID: 10.1016/j.heliyon.2019.e03038318909676928240)
Fabelico FL (2015) The phytochemical and antimicrobial properties of entomopathogenic fungi in Nueva Vizcaya, Philippines Asia. Pac J Multidisciplinary Res 3:126–133.
Fan Z, Wang L, Qin Y, Li P (2023) Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2023.120592. (PMID: 10.1016/j.carbpol.2023.12059238171699)
Farooq M, Freed S (2018) Insecticidal activity of toxic crude proteins secreted by entomopathogenic fungi against Musca domestica L. (Diptera: Muscidae). Kuwait J Sci 45(2):64–74.
Fingu-Mabola JC, Bawin T, Francis F (2021) Direct and indirect effect via endophytism of entomopathogenic fungi on the fitness of Myzus persicae and its ability to spread PLRV on tobacco. Insects 12(2):89. https://doi.org/10.3390/insects12020089. (PMID: 10.3390/insects12020089334941627909804)
Friuli M, Pellegrino R, Lamanna L, Nitti P, Madaghiele M, Demitri C (2023) Materials engineering to help pest control: a narrative overview of biopolymer-based entomopathogenic fungi formulations. Journal of Fungi 9(9):918. (PMID: 377550261053255110.3390/jof9090918)
Fuguet R, Vey A (2004) Comparative analysis of the production of insecticidal and melanizing macromolecules by strains of Beauveria spp.: in vivo studies. J. Invertebr. Pathol 85(3):152–167. https://doi.org/10.1016/j.jip.2004.03.001. (PMID: 10.1016/j.jip.2004.03.00115109898)
Gava CAT, da Silva JC, Simoes WL, Paranhos BAJ (2021) Impact of soil texture on conidia movement and residual effect of entomopathogenic fungi applied through irrigation to control fruit-fly pupae in mango orchards. Biol Control 163:104559. https://doi.org/10.1016/j.biocontrol.2021.104559. (PMID: 10.1016/j.biocontrol.2021.104559)
Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98(3):256–261. (PMID: 1842348310.1016/j.jip.2008.01.009)
Golzan SR, Talaei-Hassanloui R, Homayoonzadeh M, Safavi SA (2023) Role of cuticle-degrading enzymes of Beauveria bassiana and Metarhizium anisopliae in virulence on Plodia interpunctella (Lepidoptera, Pyralidae) larvae. J Asia-Pacific Entomol 26(2):102038. (PMID: 10.1016/j.aspen.2023.102038)
Gonzalez-Guzman A, Raya-Diaz S, Sacristán D, Yousef M, Sánchez-Rodríguez AR, Barrón V, Torrent J (2021) Effects of entomopathogenic fungi on durum wheat nutrition and growth in the field. Eur J Agron 128:126282. https://doi.org/10.1016/j.eja.2021.126282. (PMID: 10.1016/j.eja.2021.126282)
González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF (2022) The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. Plant Physiol Biochem 176:34–43. https://doi.org/10.1016/j.plaphy.2022.02.008. (PMID: 10.1016/j.plaphy.2022.02.00835217328)
Görg LM, Eilenberg J, Jensen AB, Jensen AH, Gross J (2021) Pathogenicity against hemipteran vector insects of a novel insect pathogenic fungus from Entomophthorales (Pandora sp. nov. inedit.) with potential for biological control. J Invertebr Pathol 183:107621. https://doi.org/10.1016/j.jip.2021.107621. (PMID: 10.1016/j.jip.2021.10762134029539)
Gu CX, Zhang BL, Bai WW, Liu J, Zhou W, Ling ZQ, Wan YJ (2020) Characterization of the endothiapepsin-like protein in the entomopathogenic fungus Beauveria bassiana and its virulence effect on the silkworm, Bombyx mori. J Invertebr Pathol 169:107277. https://doi.org/10.1016/j.jip.2019.107277. (PMID: 10.1016/j.jip.2019.10727731715184)
Gupta R, Leibman-Markus M, Anand G, Rav-David D, Yermiyahu U, Elad Y, Bar M (2022) Nutrient elements promote disease resistance in tomato by differentially activating immune pathways. Phytopathology® 112(11):2360–2371. (PMID: 3577104810.1094/PHYTO-02-22-0052-R)
Hanan A, Basit A, Nazir T, Majeed MZ, Qiu D (2020) Anti-insect activity of a partially purified protein derived from the entomopathogenic fungus Lecanicillium lecanii (Zimmermann) and its putative role in a tomato defense mechanism against green peach aphid. J Invertebr Pathol 170:107282. https://doi.org/10.1016/j.jip.2019.107282. (PMID: 10.1016/j.jip.2019.10728231759949)
Heo I, Kim S, Han GH, Im S, Kim JW, Hwang D, Shin TY (2023) Characteristics of insecticidal substances from the entomopathogenic fungus Metarhizium pinghaense 15R against cotton aphid in Korea. J Asia Pac Entomol 26(1):102013. https://doi.org/10.1016/j.parint.2022.102688. (PMID: 10.1016/j.parint.2022.102688)
Hong S, Shang J, Sun Y, Tang G, Wang C (2023) Fungal infection of insects: molecular insights and prospects. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.09.005. (PMID: 10.1016/j.tim.2023.09.00537778923)
Hou Q, Xu L, Liu G, Pang X, Wang X, Zhang Y, Liang R (2019) Plant-mediated gene silencing of an essential olfactory-related Gqα gene enhances resistance to grain aphid in common wheat in greenhouse and field. Pest Manag Sci 75(6):1718–1725. (PMID: 3052531210.1002/ps.5292)
Hummadi EH, Dearden A, Generalovic T, Clunie B, Harrott A, Cetin Y, Butt T (2021) Volatile organic compounds of Metarhizium brunneum influence the efficacy of entomopathogenic nematodes in insect control. Biol Control 155:104527. https://doi.org/10.1016/j.biocontrol.2020.104527. (PMID: 10.1016/j.biocontrol.2020.104527338148717923176)
Ishidoh KI, Kinoshita H, Igarashi Y, Ihara F, Nihira T (2014) Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp. J Antibiot 67(6):459–463. (PMID: 10.1038/ja.2014.22)
Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, Ali H (2021) Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 159:105122. https://doi.org/10.1016/j.micpath.2021.105122. (PMID: 10.1016/j.micpath.2021.10512234352375)
Jaber LR, Araj SE (2018) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control 116:53–61. https://doi.org/10.1016/j.biocontrol.2017.04.005. (PMID: 10.1016/j.biocontrol.2017.04.005)
Jaronski ST (2023) Mass production of entomopathogenic fungi—state of the art. Mass Prod Beneficial Organ. https://doi.org/10.1016/B978-0-12-822106-8.00017-8. (PMID: 10.1016/B978-0-12-822106-8.00017-8)
Karabörklü S, Aydınlı V, Dura O (2022) The potential of Beauveria bassiana and Metarhizium anisopliae in controlling the root-knot nematode Meloidogyne incognita in tomato and cucumber. J Asia-Pacific Entomol 25(1):101846. (PMID: 10.1016/j.aspen.2021.101846)
Karthi S, Vasantha-Srinivasan P, Senthil-Nathan S, Han YS, Shivakumar MS, Murali-Baskaran RK, Malafaia G (2024) Entomopathogenic fungi promising biocontrol agents for managing lepidopteran pests: Review of current knowledge. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2024.103146. (PMID: 10.1016/j.bcab.2024.103146)
Keshmirshekan A, de Souza Mesquita LM, Ventura SP (2024) Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2024.02.003. (PMID: 10.1016/j.tibtech.2024.02.00338448350)
Khan A, Khan A, Ali A, Fatima S, Siddiqui MA (2023) Root-Knot Nematodes (Meloidogyne spp.): biology plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen. https://doi.org/10.1007/s10343-023-00886. (PMID: 10.1007/s10343-023-00886)
Khoja S, Eltayef KM, Baxter I, Myrta A, Bull JC, Butt T (2021) Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. Biol Control 152:104472. https://doi.org/10.1016/j.biocontrol.2020.104472. (PMID: 10.1016/j.biocontrol.2020.104472333906837737096)
Khun KK, Ash GJ, Stevens MM, Huwer RK, Wilson BA (2020) Response of the macadamia seed weevil Kuschelorhynchus macadamiae (Coleoptera: Curculionidae) to Metarhizium anisopliae and Beauveria bassiana in laboratory bioassays. J Invertebr Pathol 174:107437. https://doi.org/10.1016/j.jip.2020.107437. (PMID: 10.1016/j.jip.2020.10743732593532)
Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus. Sphaerotheca Fuliginea Biological Control 40(3):327–332. (PMID: 10.1016/j.biocontrol.2006.12.002)
Kim JS, Roh JY, Choi JY, Wang Y, Shim HJ, Je YH (2010) Correlation of the aphicidal activity of Beauveria bassiana SFB-205 supernatant with enzymes. Fungal Biol 114(1):120–128. (PMID: 2096506810.1016/j.mycres.2009.10.011)
Kim JC, Lee SJ, Kim S, Lee MR, Baek S, Park SE, Kim JS (2020) Management of pine wilt disease vectoring Monochamus alternatus adults using spray and soil application of Metarhizium anisopliae JEF isolates. J Asia Pac Entomol 23(1):224–233. https://doi.org/10.1016/j.aspen.2019.12.012. (PMID: 10.1016/j.aspen.2019.12.012)
Kirubakaran SA, Abdel-Megeed A, Senthil-Nathan S (2018) Virulence of selected indigenous Metarhizium pingshaense (Ascomycota: Hypocreales) isolates against the rice leaffolder, Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Physiol Mol Plant Pathol 101:105–115. https://doi.org/10.1016/j.pmpp.2017.06.004. (PMID: 10.1016/j.pmpp.2017.06.004)
Klieber J, Reineke A (2016) The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J Appl Entomol 140(8):580–589. https://doi.org/10.1111/jen.12287. (PMID: 10.1111/jen.12287)
Koodalingam A, Dayanidhi MK (2021) Studies on biochemical and synergistic effects of immunosuppressive concentration of imidacloprid with Beauveria bassiana and Metarhizium anisopliae for enhancement of virulence against vector mosquito Culex quinquefasciatus. Pestic Biochem Physiol 176:104882. (PMID: 3411922410.1016/j.pestbp.2021.104882)
Koppenhöfer AM, Kostromytska OS, Ebssa L (2022) Species combinations, split applications, and syringing to optimize the efficacy of entomopathogenic nematodes against Agrotis ipsilon (Lepidoptera: Noctuidae) larvae in turfgrass. Crop Prot 155:105927. (PMID: 10.1016/j.cropro.2022.105927)
Kornsakulkarn J, Pruksatrakul T, Surawatanawong P, Thangsrikeattigun C, Komwijit S, Boonyuen N, Thongpanchang C (2021) Antimicrobial, antimalarial, and cytotoxic substances from the insect pathogenic fungus Beauveria asiatica BCC 16812. Phytochem Lett 43:8–15. https://doi.org/10.1016/j.phytol.2021.03.003. (PMID: 10.1016/j.phytol.2021.03.003)
Krell V, Unger S, Jakobs-Schoenwandt D, Patel AV (2018) Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol 34:43–49. https://doi.org/10.1016/j.funeco.2018.04.002. (PMID: 10.1016/j.funeco.2018.04.002)
Kreutz J, Vaupel O, Kolb M, Zimmermann G (2022) Effect of mineral dusts alone and in combination with the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. Against the bark beetle Ips typographus L. (Col, Scolytidae) in the laboratory and under field conditions. For Ecol Manag 515:120225. https://doi.org/10.1016/j.foreco.2022.120225. (PMID: 10.1016/j.foreco.2022.120225)
Kumar S, Korra T, Thakur R, Arutselvan R, Kashyap AS, Nehela Y, Keswani C (2023) Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress. https://doi.org/10.1016/j.stress.2023.100154. (PMID: 10.1016/j.stress.2023.100154)
Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, Nair RM (2023) Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. Front Plant Sci 13:1101862. https://doi.org/10.3389/fpls.2022.1101862. (PMID: 10.3389/fpls.2022.1101862367147809878403)
Landlinez-Torres A, Panelli S, Picco AM, Comandatore F, Tosi S, Capelli E (2019) A meta-barcoding analysis of soil mycobiota of the upper Andean Colombian agro-environment. Sci Rep 9(1):10085. (PMID: 10.1038/s41598-019-46485-1)
Lee SY, Nakajima I, Ihara F, Kinoshita H, Nihira T (2005) Cultivation of entomopathogenic fungi for the search of antibacterial compounds. Mycopathologia 160:321–325. https://doi.org/10.1007/s11046-005-0179-y. (PMID: 10.1007/s11046-005-0179-y16244901)
Lee SY, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2008) Identification of a novel derivative of helvolic acid from Metarhizium anisopliae grown in medium with insect component. J Biosci Bioeng 105(5):476–480. https://doi.org/10.1263/jbb.105.476. (PMID: 10.1263/jbb.105.47618558337)
Lee JY, Woo RM, Woo SD (2023) Formulation of the entomopathogenic fungus Beauveria bassiana JN5R1W1 for the control of mosquito adults and evaluation of its novel applicability. J Asia-Pac Entomol 26(2):102056. https://doi.org/10.1016/j.aspen.2023.102056. (PMID: 10.1016/j.aspen.2023.102056)
Li D, Park SE, Lee MR, Kim JC, Lee SJ, Kim JS (2021) Soil application of Beauveria bassiana JEF-350 granules to control melon thrips, thrips palmi Karny (Thysanoptera: Thripidae). J Asia-Pac Entomol 24(3):636–644. https://doi.org/10.1016/j.aspen.2021.05.010. (PMID: 10.1016/j.aspen.2021.05.010)
Li S, Liu F, Kang Z, Li X, Lu Y, Li Q, Yin X (2022) Cellular immune responses of the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae), to the entomopathogenic fungus, Beauveria bassiana (Hypocreales: Cordycipitaceae). J Invertebr Pathol 194:107826. https://doi.org/10.1016/j.jip.2022.107826. (PMID: 10.1016/j.jip.2022.10782636075444)
Liao X, Luo Q, Wu C, Zhou D, Li J, Meng Z (2023) A 1-aminocyclopropane-1-carboxylate deaminase MrACCD from Metarhizium robertsii is associated with plant growth promotion for Metarhizium spp. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2023.107928. (PMID: 10.1016/j.jip.2023.10792837392992)
Liu JF, Zhang ZQ, Beggs JR, Paderes E, Zou X, Wei XY (2020) Lethal and sublethal effects of entomopathogenic fungi on tomato/potato psyllid, Bactericera cockerelli (Šulc)(Hemiptera: Triozidae) in Capsicum. Crop Prot 129:105023. https://doi.org/10.1016/j.cropro.2019.105023. (PMID: 10.1016/j.cropro.2019.105023)
Liu ZC, Zhou L, Wang JL, Liu XS (2021) Expression of a phenoloxidase cascade inhibitor enhances the virulence of the fungus Beauveria bassiana against the insect Helicoverpa armigera. Dev Comp Immunol 117:103986. https://doi.org/10.1016/j.dci.2020.103986. (PMID: 10.1016/j.dci.2020.10398633359739)
Liu Y, Yang Y, Wang B (2022) Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Sci Rep 12(1):15706. (PMID: 36127502948979710.1038/s41598-022-19899-7)
Lorenz SC, Humbert P, Wassermann M, Mackenstedt U, Patel AV (2020) A broad approach to screening of Metarhizium spp. blastospores for the control of Ixodes ricinus nymphs. Biol Control 146:104270. https://doi.org/10.1016/j.biocontrol.2020.104270. (PMID: 10.1016/j.biocontrol.2020.104270)
Lozano-Tovar MD, Ortiz-Urquiza A, Garrido-Jurado I, Trapero-Casas A, Quesada-Moraga E (2013) Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biol Control 67(3):409–420. https://doi.org/10.1016/j.biocontrol.2013.09.006. (PMID: 10.1016/j.biocontrol.2013.09.006)
Ma X, Wang W, Li E, Gao F, Guo L, Pei Y (2016) A new sesquiterpene from the entomogenous fungus Phomopsis amygdali. Nat Prod Res 30(3):276–280. https://doi.org/10.1080/14786419.2015.1055742. (PMID: 10.1080/14786419.2015.105574226181224)
Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N (2019) Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. J Fungi 5(2):33. https://doi.org/10.3390/jof5020033. (PMID: 10.3390/jof5020033)
Mantzoukas S, Grammatikopoulos G (2020) The effect of three entomopathogenic endophytes of the sweet sorghum on the growth and feeding performance of its pest, Sesamia nonagrioides larvae, and their efficacy under field conditions. Crop Prot. https://doi.org/10.1016/j.cropro.2019.104952. (PMID: 10.1016/j.cropro.2019.104952)
Mascarin GM, Lopes RB, Delalibera Í Jr, Fernandes ÉKK, Luz C, Faria M (2019) Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J Invertebr Pathol 165:46–53. https://doi.org/10.1016/j.jip.2018.01.001. (PMID: 10.1016/j.jip.2018.01.00129339191)
Mc Namara L, Dolan SK, Walsh JM, Stephens JC, Glare TR, Kavanagh K, Griffin CT (2019) Oosporein, an abundant metabolite in Beauveria caledonica, with a feedback induction mechanism and a role in insect virulence. Fungal Biol 123(8):601–610. (PMID: 3134541410.1016/j.funbio.2019.01.004)
McGuire AV, Northfield TD (2021) Identification and evaluation of endemic Metarhizium strains for biological control of banana rust thrips. Biol Control 162:104712. https://doi.org/10.1016/j.biocontrol.2021.104712. (PMID: 10.1016/j.biocontrol.2021.104712)
Mei L, Chen M, Shang Y, Tang G, Tao Y, Zeng L, Wang C (2021) Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years. ISME J 14(6):1422–1434. https://doi.org/10.1038/s41396-020-0620-8. (PMID: 10.1038/s41396-020-0620-8)
Membang G, Ambang Z, Mahot HC, Kuate AF, Fiaboe KKM, Hanna R (2021) Thermal response and horizontal transmission of Cameroonian isolates of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae–candidates for microbial controls of the banana root borer Cosmopolites sordidus. Fungal Ecol 50:101042. https://doi.org/10.1016/j.funeco.2021.101042. (PMID: 10.1016/j.funeco.2021.101042)
Michereff-Filho M, Navia D, Quevedo IA, de Almeida Magalhães M, da Silva Melo JW, Lopes RB (2022) The effect of spider mite-pathogenic strains of Beauveria bassiana and humidity on the survival and feeding behavior of Neoseiulus predatory mite species. Biol Control 176:105083. https://doi.org/10.1016/j.biocontrol.2022.105083. (PMID: 10.1016/j.biocontrol.2022.105083)
Muniz ER, Bedini S, Sarrocco S, Vannacci G, Mascarin GM, Fernandes ÉK, Conti B (2020) Carnauba wax enhances the insecticidal activity of entomopathogenic fungi against the blowfly Lucilia sericata (Diptera: Calliphoridae). J Invertebr Pathol 174:107391. https://doi.org/10.1016/j.jip.2020.107391. (PMID: 10.1016/j.jip.2020.10739132416086)
Nirma C, Eparvier V, Stien D (2015) Reactivation of antibiosis in the entomogenous fungus Chrysoporthe sp. SNB-CN74. J Antibiot 68(9):586–590. (PMID: 10.1038/ja.2015.36)
Ortiz-Urquiza A, Garrido-Jurado I, Santiago-Álvarez C, Quesada-Moraga E (2009) Purification and characterisation of proteins secreted by the entomopathogenic fungus Metarhizium anisopliae with insecticidal activity against adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pest Manag Sci 65(10):1130–1139. (PMID: 1954830010.1002/ps.1803)
Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128. https://doi.org/10.1007/s10526-009-9241. (PMID: 10.1007/s10526-009-9241)
Park SE, Kim JC, Im Y, Kim JS (2023) Pathogenesis and defense mechanism while Beauveria bassiana JEF-410 infects poultry red mite Dermanyssus gallinae. Plos One 18(2):e0280410. https://doi.org/10.1371/journal.pone.0280410. (PMID: 10.1371/journal.pone.0280410368003669937463)
Paschapur A, Subbanna ARNS, Singh AK, Jeevan B, Stanley J, Rajashekhar H, Mishra KK (2021) Unraveling the importance of metabolites from entomopathogenic fungi in insect pest management. Microbes Sustain Insect Pest Manag 2:89–120. https://doi.org/10.1007/978-3-030-67231-7_5. (PMID: 10.1007/978-3-030-67231-7_5)
Pattnaik SS, Busi S (2019) Rhizospheric fungi: diversity and potential biotechnological applications. Recent advancement in white biotechnology through fungi: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 63–84. https://doi.org/10.1007/978-3-030-10480-1_2. (PMID: 10.1007/978-3-030-10480-1_2)
Pedrini N (2018) Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol 122(6):538–545. https://doi.org/10.1016/j.funbio.2017.10.003. (PMID: 10.1016/j.funbio.2017.10.00329801798)
Qasim M, Islam SU, Islam W, Noman A, Khan KA, Hafeez M, Wang L (2020) Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of Asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon 188:39–47. https://doi.org/10.1016/j.toxicon.2020.10.012. (PMID: 10.1016/j.toxicon.2020.10.01233058930)
Qasim M, Xiao H, He K, Omar MA, Hussain D, Noman A, Li F (2021) Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol Part C 248:109112. https://doi.org/10.1016/j.cbpc.2021.109112. (PMID: 10.1016/j.cbpc.2021.109112)
Quesada-Moraga EEAA, Maranhao EAA, Valverde-García P, Santiago-Álvarez C (2006) Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biol Control 36(3):274–287. (PMID: 10.1016/j.biocontrol.2005.09.022)
Quesada-Moraga E, Yousef-Naef M, Garrido-Jurado I (2020) Advances in the use of entomopathogenic fungi as biopesticides in suppressing crop pests. In: Shal V (ed) Biopesticides for sustainable agriculture. Burleigh Dodds Science Publishing, Cambridge, pp 63–98. (PMID: 10.19103/AS.2020.0073.05)
Rajula J, Rahman A, Krutmuang P (2020) Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biol Control 151:104399. https://doi.org/10.1016/j.biocontrol.2020.104399. (PMID: 10.1016/j.biocontrol.2020.104399)
Ramakuwela T, Hatting J, Bock C, Vega FE, Wells L, Mbata GN, Shapiro-Ilan D (2020) Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol Control 140:104102. https://doi.org/10.1016/j.biocontrol.2019.104102. (PMID: 10.1016/j.biocontrol.2019.104102)
Rauch H, Steinwender BM, Mayerhofer J, Sigsgaard L, Eilenberg J, Enkerli J, Strasser H (2017) Field efficacy of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae), Metarhizium brunneum (Hypocreales: Clavicipitaceae), and chemical insecticide combinations for Diabrotica virgifera virgifera larval management. Biol Control 107:1–10. (PMID: 10.1016/j.biocontrol.2017.01.007)
Resquín-Romero G, Garrido-Jurado I, Delso C, Ríos-Moreno A, Quesada-Moraga E (2016) Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticide against chewing insects. J Invertebr Pathol 136:23–31. https://doi.org/10.1016/j.jip.2016.03.003. (PMID: 10.1016/j.jip.2016.03.00326945771)
Rocha LF, Rodrigues J, Martinez JM, Pereira TC, Neto JR, Montalva C, Luz C (2022) Occurrence of entomopathogenic hypocrealean fungi in mosquitoes and their larval habitats in Central Brazil, and activity against Aedes aegypti. J Invertebr Pathol 194:107803. https://doi.org/10.1016/j.jip.2022.107803. (PMID: 10.1016/j.jip.2022.10780335931180)
Rosa A, Piras A, Carta G, Solari P, Crnjar R, Masala C (2018) Evaluation of the attractant effect and lipid profile modulation of natural fixed oils on the medfly Ceratitis capitata (Wiedemann). Arch Insect Biochem Physiol 99(4):e21508. (PMID: 3030281510.1002/arch.21508)
Russo ML, Pelizza SA, Vianna MF, Allegrucci N, Cabello MN, Toledo AV, Scorsetti AC (2019) Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr growth and yield. J King Saud Univ Sci 31(4):728–736. https://doi.org/10.1016/j.jksus.2018.04.008. (PMID: 10.1016/j.jksus.2018.04.008)
Sadorn K, Saepua S, Punyain W, Saortep W, Choowong W, Rachtawee P, Pittayakhajonwut P (2020) Chromanones and aryl glucoside analogs from the entomopathogenic fungus Aschersonia confluens BCC53152. Fitoterapia 144:104606. https://doi.org/10.1016/j.fitote.2020.104606. (PMID: 10.1016/j.fitote.2020.10460632376482)
Saeed MB, Laing MD, Miller RM, Bancole B (2017) Ovicidal, larvicidal and insecticidal activity of strains of Beauveria bassiana (Balsamo) Vuillemin against the cigarette beetle, Lasioderma serricorne Fabricius (Coleoptera: Anobiidae), on rice grain. J Stored Prod Res 74:78–86. https://doi.org/10.1016/j.jspr.2017.10.001. (PMID: 10.1016/j.jspr.2017.10.001)
Saidi A, Mebdoua S, Mecelem D, Al-Hoshani N, Sadrati N, Boufahja F, Bendif H (2023) Dual Biocontrol Potential of the entomopathogenic fungus Akanthomyces muscarius against Thaumetopoea pityocampa and plant pathogenic fungi. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2023.103719. (PMID: 10.1016/j.sjbs.2023.1037193745723610344813)
Salem HH, Mohammed SH, Eltaly RI, Moustafa MA, Fónagy A, Farag SM (2023) Co-application of entomopathogenic fungi with chemical insecticides against Culex pipiens. J Invertebr Pathol 198:107916. https://doi.org/10.1016/j.jip.2023.107916. (PMID: 10.1016/j.jip.2023.10791637004917)
Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N (2020) A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11(9):619. https://doi.org/10.3390/insects11090619. (PMID: 10.3390/insects11090619329277017564875)
Santos ACDS, Lopes RDS, de Oliveira LG, Diniz AG, Shakeel M, Lima EÁDLA, Lima VLDM (2022) Entomopathogenic fungi: current status and prospects. New Future Dev Biopesticide Res. https://doi.org/10.1007/978. (PMID: 10.1007/978)
Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99(1):101–107. https://doi.org/10.1016/j.jip.2016.03.003. (PMID: 10.1016/j.jip.2016.03.00322174335)
Selvaraj A, Thangavel K (2021) Arbuscular mycorrhizal fungi: Potential plant protective agent against herbivorous insect and its importance in sustainable agriculture. Symbiotic Soil Microorgan. https://doi.org/10.1007/978-3-030-51916-2_19. (PMID: 10.1007/978-3-030-51916-2_19)
Shah FA, Wang CS, Butt TM (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251(2):259–266. (PMID: 1616858110.1016/j.femsle.2005.08.010)
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W (2023) Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 27(9):782–806. (PMID: 10.2174/1385272827666230807150910)
Sharma A, Sharma S, Yadav PK (2023) Entomopathogenic fungi and their relevance in sustainable agriculture: a review. Cogent Food Agric 9(1):2180857. https://doi.org/10.1080/23311932.2023.2180857. (PMID: 10.1080/23311932.2023.2180857)
Shukla P, Bankar DR, Kumar A, Mishra PK, Raghuvanshi HR, Gayithri M (2023) Advancements in the use of entomopathogenic microbes for pest and disease management-a review. Int J Environ Clim Change 13(10):945–953. https://doi.org/10.9734/IJECC/2023/v13i102740. (PMID: 10.9734/IJECC/2023/v13i102740)
Siddiqui JA, Zhang Y, Luo Y, Bamisile BS, Rehman NU, Islam W, Xu Y (2022) Comprehensive detoxification mechanism assessment of red imported fire ant (Solenopsis invicta) against indoxacarb. Molecules 27(3):870. https://doi.org/10.3390/molecules27030870. (PMID: 10.3390/molecules27030870351641348839056)
Spechenkova N, Kalinina NO, Zavriev SK, Love AJ, Taliansky M (2023) ADP-ribosylation and antiviral resistance in plants. Viruses 15(1):241. https://doi.org/10.3390/v15010241. (PMID: 10.3390/v15010241366802809861866)
Spescha A, Weibel J, Wyser L, Brunner M, Hermida MH, Moix A, Maurhofer M (2023) Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agric Ecosyst Environ 348:108414. https://doi.org/10.1016/j.agee.2023.108414. (PMID: 10.1016/j.agee.2023.108414)
Sun S, Wang Z, Zhang Z, Hoffmann AA, Guo H (2021) The roles of entomopathogenic fungal infection of viruliferous whiteflies in controlling tomato yellow leaf curl virus. Biol Control 156:104552. https://doi.org/10.1016/j.biocontrol.2021.104552. (PMID: 10.1016/j.biocontrol.2021.104552)
Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control. https://doi.org/10.1016/j.biocontrol.2015.03.010. (PMID: 10.1016/j.biocontrol.2015.03.010)
Thaochan N, Benarlee R, Prabhakar CS, Hu Q (2020) Impact of temperature and relative humidity on effectiveness of Metarhizium guizhouense PSUM02 against longkong bark eating caterpillar Cossus chloratus Swinhoe under laboratory and field conditions. J Asia-Pac Entomol 23(2):285–290. https://doi.org/10.1016/j.aspen.2020.01.006. (PMID: 10.1016/j.aspen.2020.01.006)
Tomson M, Sahayaraj K, Sayed S, Elarnaouty SA, Petchidurai G (2021) Entomotoxic proteins of Beauveria bassiana Bals. (Vuil.) and their virulence against two cotton insect pests. J King Saud Univ Sci 33(8):101595. https://doi.org/10.1016/j.jksus.2021.101595. (PMID: 10.1016/j.jksus.2021.101595)
Tsoupras A, Kouvelis VN, Pappas KM, Demopoulos CA, Typas MA (2022) Anti-inflammatory and anti-thrombotic properties of lipid bioactives from the entomopathogenic fungus Beauveria bassiana. Prostaglandins Other Lipid Mediat 158:106606. https://doi.org/10.1016/j.prostaglandins.2021.106606. (PMID: 10.1016/j.prostaglandins.2021.10660634923152)
Tu C, Zhang Y, Zhu P, Sun L, Xu P, Wang T, Xu L (2023) Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. Pestic Biochem Physiol 193:105431. https://doi.org/10.1016/j.pestbp.2023.105431. (PMID: 10.1016/j.pestbp.2023.10543137248009)
Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2(4):149–159. (PMID: 10.1016/j.funeco.2009.05.001)
Wakil W, Ghazanfar MU, Usman M, Hunter D, Shi W (2022) Fungal-based biopesticide formulations to control nymphs and adults of the desert locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): a laboratory and field cage study. Agronomy 12(5):1160. (PMID: 10.3390/agronomy12051160)
Wang C, Huang Y, Zhao J, Ma Y, Xu X, Wan Q, Pan B (2019a) First record of Aspergillus oryzae as an entomopathogenic fungus against the poultry red mite Dermanyssus gallinae. Vet Parasitol 271:57–63. https://doi.org/10.1016/j.vetpar.2019.06.011. (PMID: 10.1016/j.vetpar.2019.06.01131303205)
Wang J, Lovett B, Leger RJS (2019b) The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. Fungal Ecol 38:7–11. https://doi.org/10.1016/j.funeco.2018.04.001. (PMID: 10.1016/j.funeco.2018.04.001)
Wang L, Wang J, Zhang X, Yin Y, Li R, Lin Y, Wang Z (2021) Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: appressorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genet Biol 150:103508. https://doi.org/10.1016/j.fgb.2020.103508. (PMID: 10.1016/j.fgb.2020.10350833675988)
Wang JL, Sun J, Song YJ, Zheng HH, Wang GJ, Luo WX, Liu XS (2023a) An entomopathogenic fungus exploits its host humoral antibacterial immunity to minimize bacterial competition in the hemolymph. Microbiome 11(1):1–18. https://doi.org/10.1186/s40168-023-01538-6. (PMID: 10.1186/s40168-023-01538-6)
Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RH, Huang B (2023) A novel partitivirus orchestrates condition, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1011397. (PMID: 10.1371/journal.ppat.10113973815048310775979)
Woolley VC, Teakle GR, Prince G, de Moor CH, Chandler D (2020) Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol 177:107480. https://doi.org/10.1016/j.jip.2020.107480. (PMID: 10.1016/j.jip.2020.107480330222827768946)
Wu JH, Ali S, Ren SX (2010) Evaluation of chitinase from Metarhizium anisopliae as biopesticide against Plutella xylostella. Pak J Zool 42(5):521–528.
Wu S, Wu J, Wang Y, Qu Y, He Y, Wang J, Cheng C (2022) Discovery of entomopathogenic fungi across geographical regions in southern China on pine sawyer beetle Monochamus alternatus and implication for multi-pathogen vectoring potential of this beetle. Front Plant Sci 13:1061520. https://doi.org/10.1016/j.funeco.2018.04.001. (PMID: 10.1016/j.funeco.2018.04.001366432939832029)
Xu Y, Orozco R, Wijeratne EK, Espinosa-Artiles P, Gunatilaka AL, Stock SP, Molnár I (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46(5):353–364. (PMID: 1928514910.1016/j.fgb.2009.03.001)
Yang R, Zhang M, Schal C, Jiang M, Cai T, Zhang F (2021) Boric acid enhances Metarhizium anisopliae virulence in Blattella germanica (L.) by disrupting the gut and altering its microbial community. Biol Control 152:104430. https://doi.org/10.1016/j.biocontrol.2020.104430. (PMID: 10.1016/j.biocontrol.2020.104430)
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin, J.s, Shu, B. (2021b) Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J Invertebr Pathol 179:107539. https://doi.org/10.1016/j.jip.2021.107539. (PMID: 10.1016/j.jip.2021.10753933508316)
Yang TH, Wu LH, Liao CT, Li D, Shin TY, Kim JS, Nai YS (2023) Entomopathogenic fungi-mediated biological control of the red palm weevil Rhynchophorus ferrugineus. J Asia-Pac Entomol. https://doi.org/10.1016/j.aspen.2023.102037. (PMID: 10.1016/j.aspen.2023.102037)
Ye G, Zhang L, Zhou X (2021) Long noncoding RNAs are potentially involved in the degeneration of virulence in an aphid-obligate pathogen, Conidiobolus obscurus (Entomophthoromycotina). Virulence 12(1):1705–1716. (PMID: 34167451823799810.1080/21505594.2021.1938806)
Yosri M, Abdel-Aziz MM, Sayed RM (2018) Larvicidal potential of irradiated myco-insecticide from Metarhizium anisopliae and larvicidal synergistic effect with its mycosynthesized titanium nanoparticles (TiNPs). J Radiation Res Appl Sci 11(4):328–334. https://doi.org/10.1016/j.jrras.2018.06.001. (PMID: 10.1016/j.jrras.2018.06.001)
Yuan Y, Huang W, Chen K, Ling E (2020) Beauveria bassiana ribotoxin inhibits insect immunity responses to facilitate infection via host translational blockage. Dev Comp Immunol 106:103605. https://doi.org/10.1016/j.dci.2019.103605. (PMID: 10.1016/j.dci.2019.10360531904434)
Zhang B, Zou C, Hu Q (2016) Effects of Isaria fumosorosea on TYLCV (tomato yellow leaf curl virus) accumulation and transmitting capacity of Bemisia tabaci. PLoS One. https://doi.org/10.1371/journal.pone.0164356. (PMID: 10.1371/journal.pone.0164356280363865201426)
Zhang J, Yu H, Li S, Zhong X, Wang H, Liu X (2020a) Comparative metabolic profiling of Ophiocordyceps sinensis and its cultured mycelia using GC–MS. Food Res Int 134:109241. https://doi.org/10.1016/j.foodres.2020.109241. (PMID: 10.1016/j.foodres.2020.10924132517908)
Zhang L, Fasoyin OE, Molnár I, Xu Y (2020b) Secondary metabolites from hypocrealean entomopathogenic fungi: Novel bioactive compounds. Nat Prod Rep 37(9):1181–1206. (PMID: 32211639752968610.1039/C9NP00065H)
Zhang C, Teng B, Liu H, Wu C, Wang L, Jin S (2023a) Impact of Beauveria bassiana on antioxidant enzyme activities and metabolomic profiles of Spodoptera frugiperda. J Invertebr Pathol 198:107929. https://doi.org/10.1016/j.jip.2023.107929. (PMID: 10.1016/j.jip.2023.10792937127135)
Zhang J, Ye C, Wang ZG, Ding BY, Smagghe G, Zhang Y, Wang JJ (2023b) DsRNAs spray enhanced the virulence of entomopathogenic fungi Beauveria bassiana in aphid control. J Pest Sci 96(1):241–251. (PMID: 10.1007/s10340-022-01508-1)
Zhang Z, Sui L, Tian Y, Lu Y, Xia X, Liu W, Shi W (2024) Metarhizium rileyi with broad-spectrum insecticidal ability confers resistance against phytopathogens and insect pests as a phytoendophyte. Pest Manag Sci. https://doi.org/10.1002/ps.8027. (PMID: 10.1002/ps.802738899541)
Zhou L, Zheng J, Liu Z, Ma W, Lei C (2016) Effects of UVA radiation on the performance of adults and the first filial generation of the fruit fly Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Proc Entomol Soc Wash 118(3):456–465. (PMID: 10.4289/0013-8797.118.3.456)
Zhou TT, Qian ZHAO, Li CZ, Lu YE, Li YF, Keyhani NO, Huang Z (2023) Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera. J Integr Agric. https://doi.org/10.1016/j.jia.2023.06.007. (PMID: 10.1016/j.jia.2023.06.007)
Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annu Rev Entomol 65:293–311. (PMID: 3161013410.1146/annurev-ento-011019-025224)
Zuharah WF, Rohaiyu MR, Azmi WA, Nagao H (2021) Pathogenicity of entomopathogenic fungus, Metarhizium anisopliae MET-GRA4 isolate on dengue vectors, Aedes albopictus and Aedes aegypti mosquito larvae (Diptera: Culicidae). J Asia-Pac Entomol 24(2):24–29. https://doi.org/10.1016/j.aspen.2021.04.008. (PMID: 10.1016/j.aspen.2021.04.008)
فهرسة مساهمة: Keywords: Commercial products; Eco-friendly solutions; Food crops; Mycopesticides; Nature-based solution; Phytopathogens
المشرفين على المادة: 0 (Biological Control Agents)
تواريخ الأحداث: Date Created: 20240528 Date Completed: 20240528 Latest Revision: 20240621
رمز التحديث: 20240621
DOI: 10.1007/s11274-024-04022-x
PMID: 38806748
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-024-04022-x