دورية أكاديمية

Recent additions and access to a multidimensional lipidomic database containing liquid chromatography, ion mobility spectrometry, and tandem mass spectrometry information.

التفاصيل البيبلوغرافية
العنوان: Recent additions and access to a multidimensional lipidomic database containing liquid chromatography, ion mobility spectrometry, and tandem mass spectrometry information.
المؤلفون: Solosky AM; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA., Kirkwood-Donelson KI; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA., Odenkirk MT; Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA., Baker ES; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. erinmsb@unc.edu.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 May 30. Date of Electronic Publication: 2024 May 30.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مستخلص: The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H] + , [M + NH 4 ] + , [M + Na] + , [M-H] - , [M-2H] 2- , [M + HCOO] - , and [M + CH 3 COO] - ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
References: Park J, Choi J, Kim D-D, Lee S, Lee B, Lee Y, et al. Bioactive lipids and their derivatives in biomedical applications. Biomolecules & Therapeutics. 2021;29(5):465–82. (PMID: 10.4062/biomolther.2021.107)
LIPID MAPS® Structure Database (LMSD) [Available from: https://www.lipidmaps.org/databases/lmsd/overview ].
Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. JLR. 2009;50(Supplement):S9–14.
Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. BBA - Mol Cell Biol Lipids. 2011;1811(11):637–47. (PMID: 10.1016/j.bbalip.2011.06.009)
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, et al. Recommendations for good practice in MS-based lipidomics. JLR. 2021;62:100138.
Liebisch G, Ahrends R, Arita M, Arita M, Bowden JA, Ejsing CS, et al. Lipidomics needs more standardization. Nat Metab. 2019;1(8):745–7. (PMID: 10.1038/s42255-019-0094-z)
Triebl A, Hartler J, Trötzmüller M. Köfeler CH (2017) Lipidomics: prospects from a technological perspective. BBA - Mol Cell Biol Lipids. 1862;8:740–6.
Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. BBA - Mol Cell Biol Lipids. 2017;1862(8):766–70. (PMID: 10.1016/j.bbalip.2017.02.016)
Zheng X, Smith RD, Baker ES. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. COCHBI. 2018;42:111–8.
Morris LJ. Separations of lipids by silver ion chromatography. JLR. 1966;7(6):717–32.
Poad BLJ, Pham HT, Thomas MC, Nealon JR, Campbell JL, Mitchell TW, et al. Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. JASMS. 2010;21(12):1989–99.
Kumarasamy E, Raghunathan R, Kandappa SK, Sreenithya A, Jockusch S, Sunoj RB, et al. Transposed Paternò-Büchi Reaction. J ACS. 2017;139(2):655–62.
Cody RB, Freiser BS. Electron impact excitation of ions from organics: an alternative to collision induced dissociation. Anal Chem. 1979;51(4):547–51. (PMID: 10.1021/ac50040a022)
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem Rev. 2020;120(7):3328–80. (PMID: 10.1021/acs.chemrev.9b0044031851501)
Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. JASMS. 2019;30(11):2185–95.
Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, et al. An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem. 2017;89(17):9048–55. (PMID: 10.1021/acs.analchem.7b01729287631905744684)
Kirkwood KI, Christopher MW, Burgess JL, Littau SR, Foster K, Richey K, et al. Development and application of multidimensional lipid libraries to investigate lipidomic dysregulation related to smoke inhalation injury severity. JPR. 2022;21(1):232–42.
Fang N, Yu S, Ronis MJ, Badger TM. Matrix effects break the LC behavior rule for analytes in LC-MS/MS analysis of biological samples. EBM. 2015;240(4):488–97.
Kirkwood KI, Pratt BS, Shulman N, Tamura K, Maccoss MJ, Maclean BX, et al. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc. 2022;17(11):2415–30. (PMID: 10.1038/s41596-022-00714-6358316129633456)
Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J BC. 1957;226(1):497–509.
Odenkirk MT, Horman BM, Dodds JN, Patisaul HB, Baker ES. Combining micropunch histology and multidimensional lipidomic measurements for in-depth tissue mapping. ACS Measurement Science Au. 2022;2(1):67–75. (PMID: 10.1021/acsmeasuresciau.1c0003535647605)
Feuerstein ML, Kurulugama RT, Hann S, Causon T. Novel acquisition strategies for metabolomics using drift tube ion mobility-quadrupole resolved all ions time-of-flight mass spectrometry (IM-QRAI-TOFMS). Anal Chim Acta. 2021;1163:338508. (PMID: 10.1016/j.aca.2021.33850834024419)
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8. (PMID: 10.1093/bioinformatics/btq054201473062844992)
Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B, Hermansson M, et al. LipidCreator workbench to probe the lipidomic landscape. Nat Commun. 2020;11(1).
Murphy RC. Tandem mass spectrometry of lipids: RSC; 2014.
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6. (PMID: 10.1038/nmeth.3393259383724449330)
Kim HI, Kim H, Pang ES, Ryu EK, Beegle LW, Loo JA, et al. Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry. Anal Chem. 2009;81(20):8289–97. (PMID: 10.1021/ac900672a197647042761977)
Fenn LS, Mclean JA. Biomolecular structural separations by ion mobility–mass spectrometry. ABC. 2008;391(3):905–9.
Leaptrot KL, May JC, Dodds JN, Mclean JA. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat. Commun. 2019;10(1).
معلومات مُعتمدة: P42 ES027704 United States ES NIEHS NIH HHS; R01 GM141277 United States GM NIGMS NIH HHS; STAR RD 84003201 United States EPA EPA; ZIC ES103363 United States ImNIH Intramural NIH HHS
فهرسة مساهمة: Keywords: Collision cross section; Database; Ion mobility spectrometry; Lipidomics; Lipids; Mass spectrometry; Reverse phase liquid chromatography (RPLC)
تواريخ الأحداث: Date Created: 20240530 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1007/s00216-024-05351-4
PMID: 38814344
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-024-05351-4