دورية أكاديمية

Metabolic pathway-based subtyping reveals distinct microenvironmental states associated with diffuse large B-cell lymphoma outcomes.

التفاصيل البيبلوغرافية
العنوان: Metabolic pathway-based subtyping reveals distinct microenvironmental states associated with diffuse large B-cell lymphoma outcomes.
المؤلفون: Wang X; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Liu H; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Fei Y; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Song Z; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Meng X; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Yu J; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Liu X; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Li L; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Qiu L; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Qian Z; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Zhou S; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Wang X; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China., Zhang H; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China.
المصدر: Hematological oncology [Hematol Oncol] 2024 Jul; Vol. 42 (4), pp. e3279.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8307268 Publication Model: Print Cited Medium: Internet ISSN: 1099-1069 (Electronic) Linking ISSN: 02780232 NLM ISO Abbreviation: Hematol Oncol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, England : Wiley-Blackwell, c1983-
مواضيع طبية MeSH: Lymphoma, Large B-Cell, Diffuse*/metabolism , Lymphoma, Large B-Cell, Diffuse*/pathology , Lymphoma, Large B-Cell, Diffuse*/genetics , Lymphoma, Large B-Cell, Diffuse*/mortality , Tumor Microenvironment* , Metabolic Networks and Pathways*, Humans ; Prognosis ; Biomarkers, Tumor/metabolism ; Female ; Male ; Gene Expression Profiling ; Mutation
مستخلص: Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease that requires personalized clinical treatment. Assigning patients to different risk categories and cytogenetic abnormality and genetic mutation groups has been widely applied for prognostic stratification of DLBCL. Increasing evidence has demonstrated that dysregulated metabolic processes contribute to the initiation and progression of DLBCL. Metabolic competition within the tumor microenvironment is also known to influence immune cell metabolism. However, metabolism- and immune-related stratification has not been established. Here, 1660 genes involved in 84 metabolic pathways were selected and tested to establish metabolic clusters (MECs) of DLBCL. MECs established based on independent lymphoma datasets distinguished different survival outcomes. The CIBERSORT algorithm and EcoTyper were applied to quantify the relative abundance of immune cell types and identify variation in cell states for 13 lineages comprising the tumor micro environment among different MECs, respectively. Functional characterization showed that MECs were an indicator of the immune microenvironment and correlated with distinctive mutational characteristics and oncogenic signaling pathways. The novel immune-related MECs exhibited promising clinical prognostic value and potential for informing DLBCL treatment decisions.
(© 2024 John Wiley & Sons Ltd.)
References: Smith A, Crouch S, Lax S, et al. Lymphoma incidence, survival and prevalence 2004‐2014: sub‐type analyses from the UK's haematological malignancy research network. Br J Cancer. 2015;112(9):1575‐1584. https://doi.org/10.1038/bjc.2015.94.
Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by world health organization subtypes. CA A Cancer J Clin. 2016;66(6):443‐459. https://doi.org/10.3322/caac.21357.
Pfreundschuh M, Kuhnt E, Trümper L, et al. CHOP‐like chemotherapy with or without rituximab in young patients with good‐prognosis diffuse large‐B‐cell lymphoma: 6‐year results of an open‐label randomised study of the mabThera international trial (MInT) Group. Lancet Oncol. 2011;12(11):1013‐1022. https://doi.org/10.1016/s1470‐2045(11)70235‐2.
Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non‐Hodgkin's lymphoma. N Engl J Med. 1993;328(14):1002‐1006. https://doi.org/10.1056/nejm199304083281404.
Coiffier B, Thieblemont C, Van Den Neste E, et al. Long‐term outcome of patients in the LNH‐98.5 trial, the first randomized study comparing rituximab‐CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the groupe d'Etudes des lymphomes de l'Adulte. Blood. 2010;116(12):2040‐2045. https://doi.org/10.1182/blood‐2010‐03‐276246.
Salles G, Barrett M, Foà R, et al. Rituximab in B‐cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther. 2017;34(10):2232‐2273. https://doi.org/10.1007/s12325‐017‐0612‐x.
Roschewski M, Staudt LM, Wilson WH. Diffuse large B‐cell lymphoma‐treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11(1):12‐23. https://doi.org/10.1038/nrclinonc.2013.197.
Blay J, Gomez F, Sebban C, et al. The international prognostic index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial. Parma group. Blood. 1998;92(10):3562‐3568.
Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M, Pileri SA. Diffuse large B‐cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146‐171. https://doi.org/10.1016/j.critrevonc.2012.12.009.
Palm W, Thompson CB. Nutrient acquisition strategies of mammalian cells. Nature. 2017;546(7657):234‐242. https://doi.org/10.1038/nature22379.
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309‐314. https://doi.org/10.1126/science.123.3191.309.
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297‐308. https://doi.org/10.1016/j.ccr.2012.02.014.
Wißfeld J, Werner A, Yan X, Ten Bosch N, Cui G. Metabolic regulation of immune responses to cancer. Cancer Biol Med. 2022;19(11):1528‐1542.
Caro P, Kishan AU, Norberg E, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22(4):547‐560. https://doi.org/10.1016/j.ccr.2012.08.014.
Masui K, Harachi M, Cavenee WK, Mischel PS, Shibata N. mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett. 2020;478:1‐7. https://doi.org/10.1016/j.canlet.2020.03.001.
Zhang X, Liang T, Yang W, et al. Astragalus membranaceus injection suppresses production of interleukin‐6 by activating autophagy through the AMPK‐mTOR pathway in lipopolysaccharide‐stimulated macrophages. Oxid Med Cell Longev. 2020;2020:1364147. https://doi.org/10.1155/2020/1364147.
Csóka B, Selmeczy Z, Koscsó B, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. Faseb J. 2012;26(1):376‐386. https://doi.org/10.1096/fj.11‐190934.
Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3‐kinase‐AKT pathway in cancer therapy. Int J Biol Macromol. 2020;164:456‐467. https://doi.org/10.1016/j.ijbiomac.2020.07.137.
Kline J, Godfrey J, Ansell SM. The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood. 2020;135(8):523‐533. https://doi.org/10.1182/blood.2019000847.
Herreros B, Sanchez‐Aguilera A, Piris MA. Lymphoma microenvironment: culprit or innocent? Leukemia. 2008;22(1):49‐58. https://doi.org/10.1038/sj.leu.2404970.
Höpken UE, Rehm A. Targeting the tumor microenvironment of leukemia and lymphoma. Trends Cancer. 2019;5(6):351‐364. https://doi.org/10.1016/j.trecan.2019.05.001.
Yin Y, Choi SC, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 2015;7(274):274ra18. https://doi.org/10.1126/scitranslmed.aaa0835.
Hurley HJ, Dewald H, Rothkopf ZS, et al. Frontline Science: AMPK regulates metabolic reprogramming necessary for interferon production in human plasmacytoid dendritic cells. J Leukoc Biol. 2021;109(2):299‐308. https://doi.org/10.1002/jlb.3hi0220‐130.
Guerra L, Bonetti L, Brenner D. Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep. 2020;32(1):107848. https://doi.org/10.1016/j.celrep.2020.107848.
Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9‐15. https://doi.org/10.1038/nchembio.1712.
Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447‐464. https://doi.org/10.1038/nrd3137.
Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B‐cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503‐511. https://doi.org/10.1038/35000501.
Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B‐cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275‐282. https://doi.org/10.1182/blood‐2003‐05‐1545.
Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithm classifies diffuse large B‐cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494‐5502. https://doi.org/10.1158/1078‐0432.ccr‐09‐0113.
Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B‐cell lymphoma. N Engl J Med. 2018;378(15):1396‐1407. https://doi.org/10.1056/nejmoa1801445.
Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679‐690. https://doi.org/10.1038/s41591‐018‐0016‐8.
Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551‐568.e14. https://doi.org/10.1016/j.ccell.2020.03.015.
Wang X, Hong Y, Meng S, et al. A novel immune‐related epigenetic signature based on the transcriptome for predicting the prognosis and therapeutic response of patients with diffuse large B‐cell lymphoma. Clin Immunol. 2022;243:109105. https://doi.org/10.1016/j.clim.2022.109105.
Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large‐B‐cell lymphomas. N Engl J Med. 2008;359(22):2313‐2323. https://doi.org/10.1056/nejmoa0802885.
Visco C, Li Y, Xu‐Monette ZY, et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B‐cell lymphoma: a report from the international DLBCL rituximab‐CHOP consortium program study. Leukemia. 2012;26(9):2103‐2113. https://doi.org/10.1038/leu.2012.83.
Dubois S, Viailly PJ, Bohers E, et al. Biological and clinical relevance of associated genomic alterations in MYD88 L265P and non‐l265P‐mutated diffuse large B‐cell lymphoma: analysis of 361 cases. Clin Cancer Res. 2017;23(9):2232‐2244. https://doi.org/10.1158/1078‐0432.ccr‐16‐1922.
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29‐34. https://doi.org/10.1093/nar/27.1.29.
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA‐seq data. BMC Bioinf. 2013;14(1):7. https://doi.org/10.1186/1471‐2105‐14‐7.
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545‐15550. https://doi.org/10.1073/pnas.0506580102.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739‐1740. https://doi.org/10.1093/bioinformatics/btr260.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059‐014‐0550‐8.
Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572‐1573. https://doi.org/10.1093/bioinformatics/btq170.
Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002;99(10):6567‐6572. https://doi.org/10.1073/pnas.082099299.
Shaffer AL, Wright G, Yang L, et al. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev. 2006;210(1):67‐85. https://doi.org/10.1111/j.0105‐2896.2006.00373.x.
Sehn LH, Salles G. Diffuse large B‐cell lymphoma. N Engl J Med. 2021;384(9):842‐858. https://doi.org/10.1056/nejmra2027612.
Zhang H, Lu Y, Zhang T, et al. PIM1 genetic alterations associated with distinct molecular profiles, phenotypes and drug responses in diffuse large B‐cell lymphoma. Clin Transl Med. 2022;12(4):e808. https://doi.org/10.1002/ctm2.808.
Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747‐1756. https://doi.org/10.1101/gr.239244.118.
Steen CB, Luca BA, Esfahani MS, et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell. 2021;39(10):1422‐1437.e10. https://doi.org/10.1016/j.ccell.2021.08.011.
Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Briefings Bioinf. 2021;22(6). https://doi.org/10.1093/bib/bbab260.
A predictive model for aggressive non‐Hodgkin's lymphoma. N Engl J Med. 1993;329(14):987‐994.
Yang Y, Shaffer AL, 3rd, Emre NC, et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell. 2012;21(6):723‐737.
Wöhner M, Tagoh H, Bilic I, et al. Molecular functions of the transcription factors E2A and E2‐2 in controlling germinal center B cell and plasma cell development. J Exp Med. 2016;213(7):1201‐1221.
Gloury R, Zotos D, Zuidscherwoude M, et al. Dynamic changes in Id3 and E‐protein activity orchestrate germinal center and plasma cell development. J Exp Med. 2016;213(6):1095‐1111.
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4‐22.
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5(10):1024‐1039.
Zhang C, Liu J, Liang Y, et al. Tumour‐associated mutant p53 drives the Warburg effect. Nat Commun. 2013;4:2935.
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453‐457.
Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955‐D961.
Daemen A, Liu B, Song K, et al. Pan‐cancer metabolic signature predicts Co‐dependency on glutaminase and de novo glutathione synthesis linked to a high‐mesenchymal cell state. Cell Metabol. 2018;28(3):383‐399.e9. https://doi.org/10.1016/j.cmet.2018.06.003.
Gaude E, Frezza C. Tissue‐specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun. 2016;7(1):13041. https://doi.org/10.1038/ncomms13041.
Gentric G, Kieffer Y, Mieulet V, et al. PML‐regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metabol. 2019;29(1):156‐173.e10. https://doi.org/10.1016/j.cmet.2018.09.002.
Le A, Lane AN, Hamaker M, et al. Glucose‐independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabol. 2012;15(1):110‐121. https://doi.org/10.1016/j.cmet.2011.12.009.
Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metabol. 2013;17(1):113‐124. https://doi.org/10.1016/j.cmet.2012.12.001.
Brand A, Singer K, Koehl GE, et al. LDHA‐associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metabol. 2016;24(5):657‐671. https://doi.org/10.1016/j.cmet.2016.08.011.
Xia H, Wang W, Crespo J, et al. Suppression of FIP200 and autophagy by tumor‐derived lactate promotes naïve T cell apoptosis and affects tumor immunity. Sci Immunol. 2017;2(17). https://doi.org/10.1126/sciimmunol.aan4631.
Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)‐2‐hydroxyglutarate. Nat Med. 2018;24(8):1192‐1203. https://doi.org/10.1038/s41591‐018‐0095‐6.
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour‐associated macrophages by tumour‐derived lactic acid. Nature. 2014;513(7519):559‐563. https://doi.org/10.1038/nature13490.
Zhang S, Zhang E, Long J, et al. Immune infiltration in renal cell carcinoma. Cancer Sci. 2019;110(5):1564‐1572. https://doi.org/10.1111/cas.13996.
Mo X, Huang X, Feng Y, et al. Immune infiltration and immune gene signature predict the response to fluoropyrimidine‐based chemotherapy in colorectal cancer patients. OncoImmunology. 2020;9(1):1832347. https://doi.org/10.1080/2162402x.2020.1832347.
Qiu L, Yu Q, Zhou Y, et al. Functionally impaired follicular helper T cells induce regulatory B cells and CD14(+) human leukocyte antigen‐DR(‐) cell differentiation in non‐small cell lung cancer. Cancer Sci. 2018;109(12):3751‐3761. https://doi.org/10.1111/cas.13836.
Kondratova M, Czerwinska U, Sompairac N, et al. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun. 2019;10(1):4808. https://doi.org/10.1038/s41467‐019‐12270‐x.
Montfort A, Pearce O, Maniati E, et al. A strong B‐cell response is part of the immune landscape in human high‐grade serous ovarian metastases. Clin Cancer Res. 2017;23(1):250‐262. https://doi.org/10.1158/1078‐0432.ccr‐16‐0081.
Leffers N, Fehrmann RS, Gooden MJ, et al. Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer. Br J Cancer. 2010;103(5):685‐692. https://doi.org/10.1038/sj.bjc.6605820.
Sha C, Barrans S, Cucco F, et al. Molecular high‐grade B‐cell lymphoma: defining a poor‐risk group that requires different approaches to therapy. J Clin Oncol. 2019;37(3):202‐212. https://doi.org/10.1200/jco.18.01314.
Shen R, Fu D, Dong L, et al. Simplified algorithm for genetic subtyping in diffuse large B‐cell lymphoma. Signal Transduct Targeted Ther. 2023;8(1):145. https://doi.org/10.1038/s41392‐023‐01358‐y.
معلومات مُعتمدة: TJSJMYXYC-D2-039 Haihe Yingcai Project; TJYXZDXK-009A Tianjin Key Medical Discipline Construction Project grant; ZLJZZDYYWZL04 Construction Project of Cancer Precision Diagnosis and Drug Treatment Technology; Y-SY2021MS-0240 Clinical Oncology Research Fund of CSCO; Chinese Society of Clinical Oncology; CORP-117 CACA-BeiGene Lymphoma Research Foundation
فهرسة مساهمة: Keywords: diffuse large B‐cell lymphoma; immune infiltration; metabolic phenotyping; prognosis
المشرفين على المادة: 0 (Biomarkers, Tumor)
تواريخ الأحداث: Date Created: 20240531 Date Completed: 20240531 Latest Revision: 20240531
رمز التحديث: 20240531
DOI: 10.1002/hon.3279
PMID: 38819002
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1069
DOI:10.1002/hon.3279