دورية أكاديمية

Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis .

التفاصيل البيبلوغرافية
العنوان: Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis .
المؤلفون: Liu L; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Luo D; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Zhang Y; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Liu D; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Yin K; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Tang Q; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., Chou S-H; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China., He J; National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
المصدر: Microbiology spectrum [Microbiol Spectr] 2024 Jul 02; Vol. 12 (7), pp. e0045024. Date of Electronic Publication: 2024 May 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: ASM Press Country of Publication: United States NLM ID: 101634614 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2165-0497 (Electronic) Linking ISSN: 21650497 NLM ISO Abbreviation: Microbiol Spectr Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : ASM Press, 2013-
مواضيع طبية MeSH: Riboswitch*/genetics , Cyclic GMP*/analogs & derivatives , Cyclic GMP*/metabolism , Cyclic GMP*/genetics , Gene Expression Regulation, Bacterial* , Bacillus thuringiensis*/genetics , Bacillus thuringiensis*/metabolism, Nucleic Acid Conformation ; Transcription, Genetic ; Terminator Regions, Genetic/genetics ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; RNA, Bacterial/genetics ; RNA, Bacterial/metabolism
مستخلص: A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro , while downstream terminator T2 is more efficient in vivo . Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.
Competing Interests: The authors declare no conflict of interest.
References: Biochemistry. 2010 Aug 31;49(34):7351-9. (PMID: 20690679)
Microbiol Spectr. 2023 Feb 14;11(1):e0275222. (PMID: 36688639)
Bioinformatics. 2007 Nov 1;23(21):2947-8. (PMID: 17846036)
RNA. 2017 Jul;23(7):995-1011. (PMID: 28396576)
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3444-53. (PMID: 23169642)
Genome Biol. 2007;8(11):R239. (PMID: 17997835)
Appl Environ Microbiol. 2022 May 10;88(9):e0037322. (PMID: 35465687)
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7757-62. (PMID: 21518891)
New Phytol. 2022 Sep;235(5):1853-1867. (PMID: 35653609)
RNA Biol. 2022 Jan;19(1):980-995. (PMID: 35950733)
J Bacteriol. 2018 Mar 12;200(7):. (PMID: 29311281)
PLoS Genet. 2013 May;9(5):e1003493. (PMID: 23675309)
FEMS Immunol Med Microbiol. 2010 Mar;58(2):285-94. (PMID: 20030712)
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13):. (PMID: 33753507)
Front Microbiol. 2018 Feb 13;9:45. (PMID: 29487570)
Front Microbiol. 2015 Sep 14;6:908. (PMID: 26441857)
Infect Immun. 2018 Apr 23;86(5):. (PMID: 29483294)
J Biol Chem. 2000 Mar 24;275(12):8726-32. (PMID: 10722715)
ACS Cent Sci. 2022 Jun 22;8(6):741-748. (PMID: 35756372)
Trends Biochem Sci. 2023 Feb;48(2):119-141. (PMID: 36150954)
Appl Environ Microbiol. 2016 Aug 15;82(17):5421-7. (PMID: 27342565)
Org Biomol Chem. 2012 Dec 14;10(46):9113-29. (PMID: 23108253)
J Biol Chem. 1991 Oct 15;266(29):19725-30. (PMID: 1918078)
Cold Spring Harb Perspect Biol. 2018 Nov 1;10(11):. (PMID: 29844057)
J Bacteriol. 2019 Oct 4;201(21):. (PMID: 31405916)
Science. 2010 Aug 13;329(5993):845-848. (PMID: 20705859)
PLoS One. 2016 Feb 05;11(2):e0148478. (PMID: 26849223)
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13132-7. (PMID: 23878253)
Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707):. (PMID: 27672149)
Nat Commun. 2016 Aug 31;7:12481. (PMID: 27578558)
FEMS Microbiol Rev. 2023 Jul 5;47(4):. (PMID: 37339911)
G3 (Bethesda). 2022 May 30;12(6):. (PMID: 35348690)
Infect Immun. 2006 Mar;74(3):1949-53. (PMID: 16495572)
Environ Microbiol. 2021 Feb;23(2):696-712. (PMID: 32592275)
Nat Methods. 2014 Sep;11(9):959-65. (PMID: 25028896)
Bioinformatics. 2016 Feb 1;32(3):459-61. (PMID: 26487736)
Nucleic Acids Res. 2018 Sep 19;46(16):e97. (PMID: 29893890)
J Bacteriol. 2015 Nov 23;198(3):565-77. (PMID: 26598364)
Enzyme Microb Technol. 2019 Jan;120:91-97. (PMID: 30396405)
J Bacteriol. 2020 Mar 26;202(8):. (PMID: 31988078)
ACS Synth Biol. 2020 May 15;9(5):1051-1058. (PMID: 32302094)
Nature. 1987 Jan 15-21;325(6101):279-81. (PMID: 18990795)
Sci Rep. 2021 Aug 10;11(1):16194. (PMID: 34376740)
FEMS Microbiol Rev. 2022 Jan 18;46(1):. (PMID: 34424339)
Cell. 2018 Mar 22;173(1):181-195.e18. (PMID: 29551268)
Curr Opin Microbiol. 2017 Apr;36:62-68. (PMID: 28214735)
Front Microbiol. 2020 Nov 26;11:604458. (PMID: 33324388)
Sci China Life Sci. 2022 Jul;65(7):1285-1324. (PMID: 35717434)
J Bacteriol. 2015 Mar;197(5):819-32. (PMID: 25512308)
Nat Commun. 2016 Aug 26;7:12612. (PMID: 27561249)
Nat Prod Rep. 2015 May;32(5):663-83. (PMID: 25666534)
Chem Biol. 2002 Sep;9(9):1043. (PMID: 12323379)
Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36. (PMID: 7584402)
Cell Rep. 2016 May 3;15(5):1100-1110. (PMID: 27117410)
J Bacteriol. 2020 Sep 8;202(19):. (PMID: 32690554)
Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1380-92. (PMID: 22993092)
Curr Opin Biotechnol. 2017 Jun;45:8-14. (PMID: 28088095)
Annu Rev Microbiol. 2019 Sep 8;73:387-406. (PMID: 31500536)
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2122660119. (PMID: 35561226)
PLoS Pathog. 2017 Aug 30;13(8):e1006594. (PMID: 28854278)
Nucleic Acids Res. 2018 Oct 12;46(18):9276-9288. (PMID: 30202891)
J Bacteriol. 2010 Aug;192(15):4074-5. (PMID: 20525827)
Nucleic Acids Res. 2019 Jul 02;47(W1):W171-W174. (PMID: 31106371)
Cell Surf. 2019 Aug 23;5:100032. (PMID: 32803021)
Nucleic Acids Res. 2020 Feb 20;48(3):1583-1598. (PMID: 31956908)
Mol Microbiol. 2002 Aug;45(4):997-1005. (PMID: 12180919)
Sci Rep. 2016 Jul 06;6:28807. (PMID: 27381437)
Nat Commun. 2022 Oct 3;13(1):5834. (PMID: 36192422)
mSphere. 2018 Oct 24;3(5):. (PMID: 30355665)
Mol Microbiol. 2021 Aug;116(2):361-365. (PMID: 33797153)
Nat Struct Mol Biol. 2009 Dec;16(12):1218-23. (PMID: 19898477)
Mol Cell. 2021 Jan 7;81(1):127-138.e4. (PMID: 33212019)
J Microbiol. 2017 Jun;55(6):457-463. (PMID: 28434086)
Nucleic Acids Res. 2017 Jul 7;45(12):7474-7486. (PMID: 28520932)
Biotechnol Adv. 2022 May-Jun;56:107915. (PMID: 35101567)
Mol Microbiol. 2012 Apr;84(1):147-65. (PMID: 22394314)
Nat Chem Biol. 2017 Mar 22;13(4):350-359. (PMID: 28328921)
Microb Biotechnol. 2021 Nov;14(6):2538-2551. (PMID: 33720523)
Chem Soc Rev. 2013 Jan 7;42(1):305-41. (PMID: 23023210)
Biochemistry. 2012 Jan 10;51(1):425-32. (PMID: 22148472)
Nat Rev Microbiol. 2017 May;15(5):271-284. (PMID: 28163311)
Antioxid Redox Signal. 2018 Dec 20;29(18):1858-1871. (PMID: 28938859)
Front Cell Infect Microbiol. 2018 Feb 28;8:56. (PMID: 29541628)
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Oct 1;68(Pt 10):1247-50. (PMID: 23027759)
J Bacteriol. 2019 Jul 24;201(16):. (PMID: 31138629)
NPJ Biofilms Microbiomes. 2022 Dec 16;8(1):97. (PMID: 36526637)
BMC Microbiol. 2015 Aug 19;15:166. (PMID: 26286031)
Biochemistry. 2017 Jan 17;56(2):359-363. (PMID: 28001372)
Sci Rep. 2016 Feb 19;6:20871. (PMID: 26892868)
Nature. 2002 Oct 31;419(6910):952-6. (PMID: 12410317)
FEBS J. 2015 Aug;282(16):3230-42. (PMID: 25661987)
J Bacteriol. 2012 Mar;194(5):914-24. (PMID: 22194449)
mBio. 2022 Feb 15;13(1):e0296921. (PMID: 35164558)
Nucleic Acids Res. 2011 Nov;39(21):9130-8. (PMID: 21821657)
Science. 2008 Jul 18;321(5887):411-3. (PMID: 18635805)
Elife. 2022 Jan 26;11:. (PMID: 35080493)
Annu Rev Microbiol. 2020 Sep 8;74:607-631. (PMID: 32689917)
Nucleic Acids Res. 2013 May;41(9):e102. (PMID: 23511969)
J Biol Chem. 2002 Dec 13;277(50):48949-59. (PMID: 12376536)
Nat Rev Microbiol. 2009 Apr;7(4):263-73. (PMID: 19287449)
Mol Cell. 2020 Feb 6;77(3):586-599.e6. (PMID: 31810759)
Nucleic Acids Res. 2007;35(14):4809-19. (PMID: 17621584)
Nucleic Acids Res. 2016 Jul 08;44(W1):W272-6. (PMID: 27185894)
Biochemistry. 2022 Feb 1;61(3):137-149. (PMID: 35068140)
Environ Microbiol. 2020 Mar;22(3):1125-1140. (PMID: 31858668)
Genes Cells. 2018 Jun;23(6):435-447. (PMID: 29693296)
Mol Microbiol. 2002 Sep;45(6):1613-29. (PMID: 12354229)
J Bacteriol. 1990 Dec;172(12):6863-70. (PMID: 2174861)
Sci Signal. 2016 Oct 18;9(450):fs16. (PMID: 27811181)
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80. (PMID: 7984417)
J Bacteriol. 2016 Jan;198(1):32-46. (PMID: 26055114)
Microbiol Res. 2023 Mar;268:127302. (PMID: 36640720)
J Biochem. 2016 Sep;160(3):153-62. (PMID: 27033943)
Biophys J. 2017 Jul 25;113(2):290-301. (PMID: 28625696)
Inorg Chem. 2022 Jun 27;61(25):9454-9468. (PMID: 35696675)
Annu Rev Genet. 2006;40:385-407. (PMID: 16895465)
Acc Chem Res. 2021 May 18;54(10):2502-2517. (PMID: 33960770)
Nucleic Acids Res. 2022 Jul 8;50(12):6639-6655. (PMID: 35736222)
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. (PMID: 24753421)
Mol Microbiol. 2014 Oct 7;:. (PMID: 25287944)
معلومات مُعتمدة: 31770087 MOST | National Natural Science Foundation of China (NSFC); 31970074 MOST | National Natural Science Foundation of China (NSFC); 32171424 MOST | National Natural Science Foundation of China (NSFC)
فهرسة مساهمة: Keywords: Bacillus cereus group; SHAPE-MaP; Zur (zinc uptake regulator); cyclic di-GMP riboswitch; dual regulation; dual terminator
المشرفين على المادة: 0 (Riboswitch)
H2D2X058MU (Cyclic GMP)
61093-23-0 (bis(3',5')-cyclic diguanylic acid)
0 (Bacterial Proteins)
0 (RNA, Bacterial)
تواريخ الأحداث: Date Created: 20240531 Date Completed: 20240702 Latest Revision: 20240711
رمز التحديث: 20240711
مُعرف محوري في PubMed: PMC11218506
DOI: 10.1128/spectrum.00450-24
PMID: 38819160
قاعدة البيانات: MEDLINE
الوصف
تدمد:2165-0497
DOI:10.1128/spectrum.00450-24