دورية أكاديمية

Development and validation of a collaborative robotic platform based on monocular vision for oral surgery: an in vitro study.

التفاصيل البيبلوغرافية
العنوان: Development and validation of a collaborative robotic platform based on monocular vision for oral surgery: an in vitro study.
المؤلفون: Huang J; Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China., Bao J; Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China., Tan Z; Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, London, UK., Shen S; Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China. 114068@sh9hospital.org.cn., Yu H; Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China. yhb3508@163.com.
المصدر: International journal of computer assisted radiology and surgery [Int J Comput Assist Radiol Surg] 2024 Sep; Vol. 19 (9), pp. 1797-1808. Date of Electronic Publication: 2024 Jun 01.
نوع المنشور: Journal Article; Validation Study
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101499225 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1861-6429 (Electronic) Linking ISSN: 18616410 NLM ISO Abbreviation: Int J Comput Assist Radiol Surg Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer
مواضيع طبية MeSH: Robotic Surgical Procedures*/instrumentation , Robotic Surgical Procedures*/methods , Equipment Design*, Humans ; Vision, Monocular/physiology ; Oral Surgical Procedures/instrumentation ; Oral Surgical Procedures/methods ; In Vitro Techniques ; Surgery, Computer-Assisted/methods ; Surgery, Computer-Assisted/instrumentation
مستخلص: Purpose: Surgical robots effectively improve the accuracy and safety of surgical procedures. Current optical-navigated oral surgical robots are typically developed based on binocular vision positioning systems, which are susceptible to factors including obscured visibility, limited workplace, and ambient light interference. Hence, the purpose of this study was to develop a lightweight robotic platform based on monocular vision for oral surgery that enhances the precision and efficiency of surgical procedures.
Methods: A monocular optical positioning system (MOPS) was applied to oral surgical robots, and a semi-autonomous robotic platform was developed utilizing monocular vision. A series of vitro experiments were designed to simulate dental implant procedures to evaluate the performance of optical positioning systems and assess the robotic system accuracy. The singular configuration detection and avoidance test, the collision detection and processing test, and the drilling test under slight movement were conducted to validate the safety of the robotic system.
Results: The position error and rotation error of MOPS were 0.0906 ± 0.0762 mm and 0.0158 ± 0.0069 degrees, respectively. The attitude angle of robotic arms calculated by the forward and inverse solutions was accurate. Additionally, the robot's surgical calibration point exhibited an average error of 0.42 mm, with a maximum error of 0.57 mm. Meanwhile, the robot system was capable of effectively avoiding singularities and demonstrating robust safety measures in the presence of minor patient movements and collisions during vitro experiment procedures.
Conclusion: The results of this in vitro study demonstrate that the accuracy of MOPS meets clinical requirements, making it a promising alternative in the field of oral surgical robots. Further studies will be planned to make the monocular vision oral robot suitable for clinical application.
(© 2024. CARS.)
References: Guo X, Wang D, Li J, Zhang H (2023) Global research status and trends in orthopaedic surgical robotics: a bibliometric and visualisation analysis study. J Robotic Surg 17:1743–1756. https://doi.org/10.1007/s11701-023-01579-x. (PMID: 10.1007/s11701-023-01579-x)
Xu Z, Xiao Y, Zhou L, Lin Y, Su E, Chen J, Wu D (2023) Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: An in vitro study. J Dent 137:104642. https://doi.org/10.1016/j.jdent.2023.104642. (PMID: 10.1016/j.jdent.2023.10464237517786)
Li N, Jiang Z, Pu R, Zhu D, Yang G (2023) Implant failure and associated risk factors of transcrestal sinus floor elevation: a retrospective study. Clin Oral Implant Res 34:66–77. https://doi.org/10.1111/clr.14020. (PMID: 10.1111/clr.14020)
Seo C, Juodzbalys G (2018) Accuracy of guided surgery via stereolithographic mucosa-supported surgical guide in implant surgery for edentulous patient: a systematic review. J Oral Maxillofac Res 9:e1. https://doi.org/10.5037/jomr.2018.9101. (PMID: 10.5037/jomr.2018.9101297071805913414)
Wu Y, Wang F, Huang W, Fan S (2019) Real-time navigation in zygomatic implant placement: workflow. Oral Maxillofac Surg Clin North Am 31:357–367. https://doi.org/10.1016/j.coms.2019.03.001. (PMID: 10.1016/j.coms.2019.03.00131113696)
Block MS, Emery RW (2016) Static or dynamic navigation for implant placement—choosing the method of guidance. J Oral Maxillofac Surg 74:269–277. https://doi.org/10.1016/j.joms.2015.09.022. (PMID: 10.1016/j.joms.2015.09.02226452429)
Golob Deeb J, Bencharit S, Carrico CK, Lukic M, Hawkins D, Rener-Sitar K, Deeb GR (2019) Exploring training dental implant placement using computer-guided implant navigation system. Oral Surg Oral Med Oral Pathol Oral Radiol 128:e21. https://doi.org/10.1016/j.oooo.2019.02.248. (PMID: 10.1016/j.oooo.2019.02.248)
Kivovics M, Takács A, Pénzes D, Németh O, Mijiritsky E (2022) Accuracy of dental implant placement using augmented reality-based navigation, static computer assisted implant surgery, and the free-hand method: an in vitro study. J Dent 119:104070. https://doi.org/10.1016/j.jdent.2022.104070. (PMID: 10.1016/j.jdent.2022.10407035183695)
Grecchi E, Stefanelli LV, Grecchi F, Grivetto F, Franchina A, Pranno N (2022) A novel guided zygomatic implant surgery system compared to free hand: a human cadaver study on accuracy. J Dent 119:103942. https://doi.org/10.1016/j.jdent.2021.103942. (PMID: 10.1016/j.jdent.2021.10394234974136)
Wu Y, Wang F, Fan S, Chow JK-F (2019) Robotics in dental implantology. Oral Maxillofac Surg Clin North Am 31:513–518. https://doi.org/10.1016/j.coms.2019.03.013. (PMID: 10.1016/j.coms.2019.03.01331103316)
Tao B, Feng Y, Fan X, Zhuang M, Chen X, Wang F, Wu Y (2022) Accuracy of dental implant surgery using dynamic navigation and robotic systems: an in vitro study. J Dent 123:104170. https://doi.org/10.1016/j.jdent.2022.104170. (PMID: 10.1016/j.jdent.2022.10417035679989)
Jia S, Wang G, Zhao Y, Wang X (2023) Accuracy of an autonomous dental implant robotic system versus static guide-assisted implant surgery: a retrospective clinical study. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2023.04.027. (PMID: 10.1016/j.prosdent.2023.04.02737852858)
Li Y, Hu J, Tao B, Yu D, Shen Y, Fan S, Wu Y, Chen X (2020) Automatic robot-world calibration in an optical-navigated surgical robot system and its application for oral implant placement. Int J CARS 15:1685–1692. https://doi.org/10.1007/s11548-020-02232-w. (PMID: 10.1007/s11548-020-02232-w)
Gao Y, Qin C, Tao B, Hu J, Wu Y, Chen X (2021) An electromagnetic tracking implantation navigation system in dentistry with virtual calibration. Int J Med Robot Comput Assist Surg 17:e2215. https://doi.org/10.1002/rcs.2215. (PMID: 10.1002/rcs.2215)
Gao G, Zhao J, Na J (2018) Decoupling of kinematic parameter identification for articulated arm coordinate measuring machines. IEEE Access 6:50433–50442. https://doi.org/10.1109/ACCESS.2018.2868497. (PMID: 10.1109/ACCESS.2018.2868497)
Chen J, Zhuang M, Tao B, Wu Y, Ye L, Wang F (2023) Accuracy of immediate dental implant placement with task-autonomous robotic system and navigation system: an in vitro study. Clin Oral Implants Res. https://doi.org/10.1111/clr.14104. (PMID: 10.1111/clr.1410438112164)
Yan B, Zhang W, Cai L, Zheng L, Bao K, Rao Y, Yang L, Ye W, Guan P, Yang W, Li J, Yang R (2022) Optics-guided robotic system for dental implant surgery. Chin J Mech Eng 35:55. https://doi.org/10.1186/s10033-022-00732-1. (PMID: 10.1186/s10033-022-00732-1)
Bi Y, Li C, Tong X, Wang G, Sun H (2023) An application of stereo matching algorithm based on transfer learning on robots in multiple scenes. Sci Rep 13:12739. https://doi.org/10.1038/s41598-023-39964-z. (PMID: 10.1038/s41598-023-39964-z3754495810404586)
Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22:1330–1334. https://doi.org/10.1109/34.888718. (PMID: 10.1109/34.888718)
Dong M, Xu L, Wang J, Sun P, Zhu L (2013) Variable-weighted grayscale centroiding and accuracy evaluating. Adv Mech Eng 5:428608. https://doi.org/10.1155/2013/428608. (PMID: 10.1155/2013/428608)
Ke T, Roumeliotis SI (2017) An efficient algebraic solution to the perspective-three-point problem. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4618–4626.
Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp 2564–2571.
Meza J, Romero LA, Marrugo AG (2021) MarkerPose: robust real-time planar target tracking for accurate stereo pose estimation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1282–1290.
Wang S, Xu S, Ma Z, Wang D, Li W (2023) A systematic solution for moving-target detection and tracking while only using a monocular camera. Sensors 23:4862. https://doi.org/10.3390/s23104862. (PMID: 10.3390/s231048623743077510222631)
Ma Q, Kobayashi E, Suenaga H, Hara K, Wang J, Nakagawa K, Sakuma I, Masamune K (2020) Autonomous surgical robot with camera-based markerless navigation for oral and maxillofacial surgery. IEEE/ASME Trans Mech 25:1084–1094. https://doi.org/10.1109/TMECH.2020.2971618. (PMID: 10.1109/TMECH.2020.2971618)
Yang J, Li H (2024) Accuracy assessment of robot-assisted implant surgery in dentistry: a systematic review and meta-analysis. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2023.12.003. (PMID: 10.1016/j.prosdent.2023.12.00339209680)
Bi S, Wang M, Zou J, Gu Y, Zhai C, Gong M (2022) Dental implant navigation system based on trinocular stereo vision. Sensors 22:2571. https://doi.org/10.3390/s22072571. (PMID: 10.3390/s22072571354081869003237)
Bi S, Gu Y, Zou J, Wang L, Zhai C, Gong M (2021) High precision optical tracking system based on near infrared trinocular stereo vision. Sensors 21:2528. https://doi.org/10.3390/s21072528. (PMID: 10.3390/s21072528339165828038438)
Wei S, Li Y, Deng K, Lai H, Tonetti MS, Shi J (2022) Does machine-vision-assisted dynamic navigation improve the accuracy of digitally planned prosthetically guided immediate implant placement? a randomized controlled trial. Clin Oral Implant Res 33:804–815. https://doi.org/10.1111/clr.13961. (PMID: 10.1111/clr.13961)
Ruppin J, Popovic A, Strauss M, Spüntrup E, Steiner A, Stoll C (2008) Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Implant Res 19:709–716. https://doi.org/10.1111/j.1600-0501.2007.01430.x-i2. (PMID: 10.1111/j.1600-0501.2007.01430.x-i2)
Cheng K, Kan T, Liu Y, Zhu W, Zhu F, Wang W, Jiang X, Dong X (2021) Accuracy of dental implant surgery with robotic position feedback and registration algorithm: an in-vitro study. Comput Biol Med 129:104153. https://doi.org/10.1016/j.compbiomed.2020.104153. (PMID: 10.1016/j.compbiomed.2020.10415333260102)
Zhou LP, Zhang RJ, Sun YW, Zhang L, Shen CL (2021) Accuracy of pedicle screw placement and four other clinical outcomes of robotic guidance technique versus computer-assisted navigation in thoracolumbar surgery: a meta-analysis. World Neurosurg 146:e139–e150. https://doi.org/10.1016/j.wneu.2020.10.055. (PMID: 10.1016/j.wneu.2020.10.05533075574)
معلومات مُعتمدة: 81571022 National Natural Science Foundation of China; DLY201808 Multicenter clinical research project of Shanghai Jiao Tong University School of Medicine; 23ZR1438100 Shanghai Natural Science Foundation; 23S31904400 Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
فهرسة مساهمة: Keywords: Dental implant; Human–robot collaborative; Monocular vision; Optical positioning system; Oral surgery; Robot-assisted surgery
تواريخ الأحداث: Date Created: 20240601 Date Completed: 20240831 Latest Revision: 20240831
رمز التحديث: 20240902
DOI: 10.1007/s11548-024-03161-8
PMID: 38822980
قاعدة البيانات: MEDLINE
الوصف
تدمد:1861-6429
DOI:10.1007/s11548-024-03161-8