دورية أكاديمية

Formulation of quinoa oil-alginate loaded nanoemulsion and its anticancer efficacy as a therapy for chemically induced breast cancer.

التفاصيل البيبلوغرافية
العنوان: Formulation of quinoa oil-alginate loaded nanoemulsion and its anticancer efficacy as a therapy for chemically induced breast cancer.
المؤلفون: El Makawy AI; Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt. aelmakawy@yahoo.com., Mabrouk DM; Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., Ibrahim FM; Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., Abdel-Aziem SH; Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., El-Kader HAMA; Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., Youssef DA; Pests and plant protection Department, Agricultural and Biology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., Sharaf HA; Pathology Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt., Mohammed SE; Food Sciences and Nutrition Department, Food Industries and Nutrition Research institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, P. O. 12622, Egypt.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jun 01; Vol. 51 (1), pp. 705. Date of Electronic Publication: 2024 Jun 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Chenopodium quinoa*/chemistry , Emulsions* , Plant Oils*/pharmacology , Plant Oils*/chemistry , Alginates*/chemistry , Alginates*/pharmacology , Breast Neoplasms*/drug therapy , Breast Neoplasms*/pathology, Animals ; Female ; Rats ; Antioxidants/pharmacology ; Reactive Oxygen Species/metabolism ; Nanoparticles/chemistry ; Seeds/chemistry ; Antineoplastic Agents/pharmacology ; Oxidative Stress/drug effects ; Humans
مستخلص: Background: Quinoa seeds (Chenopodium quinoa Willd.) have gained interest due to their naturally occurring phytochemicals and antioxidants. They possess potent anticancer properties against human colorectal cancer.
Methods and Results: Fatty acids in quinoa oil were studied using gas chromatography-mass spectrometry. Rats were used to test the acute oral toxicity of the nanoemulsion loaded with sodium alginate. The DPPH radical scavenging method was employed to assess the nanoemulsion's ability to scavenge free radicals. It was examined the in vivo anticancer potential of quinoa oil nanoemulsion on rats with breast cancer induced by 7, 12-dimethylbenz (a) anthracene (DMBA). DMBA-breast cancer models received daily quinoa oil nanoemulsions for 30 days. The anticancer effect of the nanoemulsion was assessed by measuring ROS, protein carbonyl, gene expression of anti-oncogenes, and histopathological analysis. Supplying quinoa oil nanoemulsion significantly reduced the increase in serum ROS and PC levels induced in breast cancer tissue. The expression levels of antioncogenes in breast cancer tissue were decreased by the quinoa oil nanoemulsion. Nanoemulsions also improved the cellular morphology of breast tumors.
Conclusion: The study results indicate that quinoa oil nanoemulsion has anticancer activity against breast cancer, effectively modulating oxidative stress markers, anti-oncogene expressions, and tissue architecture. It can be inferred from the results that quinoa oil nanoemulsion is a chemoprotective medication that may hinder breast cancer progression in rats.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Hashem S, Ali AT, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S et al (2022) Targeting cancer signaling pathways by natural products: exploring promising anti-cancer agents. Biomed Pharmacother 150:113054. https://doi.org/10.1016/j.biopha.
Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C (2020) Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the golden grain and socio-economic and environmental aspects of its cultivation and marketization. Foods 19(2):216. https://doi.org/10.3390/foods9020216. (PMID: 10.3390/foods9020216)
Wali AM, Kenawey MK, Ibrahim OM et al (2022) Productivity of Quinoa (Chenopodium quinoa L.) under new reclaimed soil conditions at north-western coast of Egypt. Bullen Natl Res Centre 46;38. https://doi.org/10.1186/s42269-022-00724-04.
Soheilikhah Z, Sharifi S (2021) A review of the compounds of Quinoa and their effects on Human Health. Annals R S C B 25(4):2021–20676. http://annalsofrscb.ro.
Pathan S, Siddiqui RA (2022) Nutritional composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: a review. Nutrients 14(3):558. https://doi.org/10.3390/nu14030558. (PMID: 10.3390/nu14030558352769138840215)
Ng YC, Wang M (2021) The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: a review. Food Front 2(3):329–356. https://doi.org/10.1002/fft2.109. (PMID: 10.1002/fft2.109)
Mohamed DA, Fouda KA, Mohamed RS (2019) In vitro anticancer activity of quinoa and safflower seeds and their preventive effects on non-alcoholic fatty liver. Pak J Biol Sci 22(8):383–392. https://doi.org/10.3923/pjbs.2019.383.392. (PMID: 10.3923/pjbs.2019.383.39231930826)
Stikic RI, Milincic DD, Kostic AZ, Jovanovic ZB, Gasic UM, Tesic ZL, Pesic MB (2020) Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem 97(3):626–633. (PMID: 10.1002/cche.10278)
Bata SM, Shams KA, Khalil AK, Hassan RA, Saleh IA, Hamed AR, Abdel-Azim NS, Hammouda FM (2020) Investigation of lipoidal matter of Chenopodium quinoa seeds and its cytotoxicity potential against three human cancer cell lines. Egypt Pharm J 19:47–54. (PMID: 10.4103/epj.epj_53_19)
Shen Y, Zhen L, Peng Y, Zhu X, Liu F, Yang X, Li H (2022) Physicochemical, antioxidant and anticancer characteristics of seed oil from three Chenopodium quinoa genotypes. Molecules 27:2453. https://doi.org/10.3390/molecules27082453. (PMID: 10.3390/molecules27082453354586519025313)
Lira KHD, Passos TS, Ramalho HMM, Rodrigues KDdSR, Vieira E, dA C AMTdM, et al (2020) Whey protein isolate-gelatin nanoparticles enable the water-dispersibility and potentialize the antioxidant activity of quinoa oil (Chenopodium quinoa). PLoS ONE 15(10):e0240889. https://doi.org/10.1371/journal.pone.0240889. (PMID: 10.1371/journal.pone.0240889331254027598505)
Juan CA, Jose Manuel Perez de la Lastra, Francisco, Plou J, Eduardo, Pérez-Lebeña (2021) The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies International Journal of Molecular Sciences 22, no. 9: 4642. https://doi.org/10.3390/ijms22094642.
Zewen L, Zhangpin R, Jun Z, Chia-Chen C, Eswar K, Tingyang Z, Li Z (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9(477):1–14. https://doi.org/10.3389/fphys.2018.00477.
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020) Global cancer observatory: cancer today; International Agency for Research on Cancer. Lyon, France.
Bellanger M, Zeinomar N, Tehranifar P, Terry MB (2018) Are global breast cancer incidence and mortality patterns related to country-specific economic development and prevention strategies? J Glob Oncol 4:1–16. https://doi.org/10.1200/JGO.17.00207. (PMID: 10.1200/JGO.17.0020730085889)
Abdelaziz AH, Shawki MA, Shaaban AM, Albarouki SK, Rachid AM, Alsalhani OM, Jomaa MK (2021) Breast cancer awareness among Egyptian women and the impact of caring for patients with breast cancer on family caregivers’ knowledge and behaviour. Res Oncol 17(1):1–8.
Kim K, Khang D (2020) Past, Present, and future of Anticancer Nanomedicine. Int J Nanomed 15:5719–5743. https://doi.org/10.2147/IJN.S254774. (PMID: 10.2147/IJN.S254774)
Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Ebrahim NA (2021) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques. Techniques Appl 3–54. https://doi.org/10.5772/intechopen.94856.
Goncu B, Yucesan E (2020) Microencapsulation for Clinical Applications and Transplantation by Using Different Alginates, Nano- and Microencapsulation - Techniques and Applications, IntechOpen, https://doi.org/10.5772/intechopen.92134.
Kontomanolis NE, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N et al (2020) Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res 40(11):6009–6015. https://doi.org/10.21873/anticanres.14622. (PMID: 10.21873/anticanres.1462233109539)
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A, Cenciarelli C (2021) P53 signaling in cancer progression and therapy. Cancer Cell Int 21(1):1–5. (PMID: 10.1186/s12935-021-02396-8)
Neiger HE, Siegler EL, Shi Y (2021) Breast Cancer predisposition genes and synthetic lethality. Int J Mol Sci 22(11):5614. https://doi.org/10.3390/ijms22115614. (PMID: 10.3390/ijms22115614340706748198377)
Tsuda K, Sakai K, Tanabe K, Kishida Y (1960) Isolation of 22-dehydrocholesterol from Hypnea Japonica. J Am Chem Soc 82:1442–1443. (PMID: 10.1021/ja01491a040)
El makawy IA, Mabrouk MD, Mohammed ES, Abdel-Aziem HS, El-Kader AAH, Sharaf AH, Youssef AD, Ibrahim MF (2022) The suppressive role of nanoencapsulated Chia oil against DMBA-induced breast cancer through oxidative stress repression and tumor genes expression modulation in rats. Mol biol rep 49(11):10217–10228. https://doi.org/10.1007/s11033-022-07885-1. (PMID: 10.1007/s11033-022-07885-136063350)
Youssef DA, Abdelmegeed SM (2021) Polymer-based encapsulation of peppermint oil (Mentha piperita) nanoemulsion and its effects on life and some physiological activities of honeybees Apis mellifera (Hymenoptera: Apidae). Egypt Pharmaceut J 20(4):313–322.
Ibrahim MF, Fouad R, EL-Hallouty S, Hendawy FS, Omer AE, Mohammed SR (2021) Egyptian Myrtus communis L. essential oil potential role as in vitro antioxidant, cytotoxic and α-amylase inhibitor. Egypt J Chem 64(6):3005–3017.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression datausing real-time quantitative PCR and the2 (– Delta Delta C (T)) method. Methods 25(4):402–408. (PMID: 10.1006/meth.2001.126211846609)
Bancroft JD, Stevens GA (1990) Theory and practice of histological techniques, 2nd edn. Churchill Livingstone, London.
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC (2019) Natural products and Synthetic analogs as a source of Antitumor Drugs. Biomolecules 9(11):679. https://doi.org/10.3390/biom9110679 PMID: 31683894; PMCID: PMC6920853. (PMID: 10.3390/biom9110679316838946920853)
Krishnamoorthy D, Sankaran (2016) Modulatory effect of Pleurotus ostreatus on oxidant/antioxidant status in 7, 12-dimethylbenz (a) anthracene induced mammary carcinoma in experimental rats-A dose-response study. J Cancer Res Ter 12:386.
Ranjan S, Sow S, Ghosh M, Padhan SR, Kumar S, Gitari H, Mirriam A, Nath D (2023) Nutraceutical properties and secondary metabolites of quinoa (Chenopodium quinoa Willd.): a review. Int J Food Pro 26(2):3477–3491. (PMID: 10.1080/10942912.2023.2286895)
Aryal B, Rao VA (2018) Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue. PLoS ONE 13(3):e0194164. https://doi.org/10.1371/journal. (PMID: 10.1371/journal295964995875748)
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV (2017) Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 111:6–24. 10.1016/j. freeradbiomed.2016.12.034. (PMID: 10.1016/j.freeradbiomed.2016.12.03428027924)
Zghair NA, Sharma R, Alfaham M, Ksharma A (2018) Upregulation of BRCA1, ERBB2 and TP53 marker genes expression in breast cancer patients. Int J Pharm Res 10(2):147–154.
Jaggi R, Shukla S, Acharya S, Vaghaet S. (2020) Utility of TP53 in breast carcinoma immunophenotypes. J Clin Diagn Res 14(9):EE05–EE09.
Al-Dhaheri W, Hassouna I, Karam SM (2018) Genetic polymorphisms and protein expression of P53 and BRCA1 in preneoplastic and neoplastic rat mammary glands. Oncol Rep 39:2193–2200. https://doi.org/10.3892/or.2018.6284. (PMID: 10.3892/or.2018.628429498408)
Satyananda V, Oshi M, Endo I, Takabe K (2021) High BRCA2 gene expression is associated with aggressive and highly proliferative breast cancer. Ann Surg Oncol 28(12):7356–7365. (PMID: 10.1245/s10434-021-10063-533966140)
Wang Z, Zhang J, Zhang Y, Deng Q, Liang H (2018) Expression and mutations of BRCA in breast cancer and ovarian cancer: evidence from bioinformatics analyses. Int J Mol Med 42:3542–3550. https://doi.org/10.3892/ijmm.2018.3870. (PMID: 10.3892/ijmm.2018.387030221688)
Aubrey B, Kelly G, Janic A et al (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression. Cell Death Differ 25:104–113. https://doi.org/10.1038/cdd.2017.169. (PMID: 10.1038/cdd.2017.16929149101)
Sethy C, Kundu CN (2021) 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother 137:111285. (PMID: 10.1016/j.biopha.2021.11128533485118)
Mazrouei R, Raeisi E, Lemoigne Y, Heidarian E (2019) Activation of p53 gene expression and synergistic antiproliferative effects of 5-fluorouracil and β-escin on MCF7 cells. J Med Signals Sens 9(3):196. (PMID: 10.4103/jmss.JMSS_44_18315440606743244)
Hamza AA, Khasawneh AM, Elwy MH, Hassanin OS, Elhabal FS, Fawzi MN (2022) Salvadora Persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis. Biomed Pharmacoth 147:112666. https://doi.org/10.1016/j.biopha.2022.112666. (PMID: 10.1016/j.biopha.2022.112666)
Fan X, Guo H, Teng C, Zhang B, Blecker C, Ren G (2022) Anti-colon Cancer activity of novel peptides isolated from In Vitro Digestion of Quinoa Protein in Caco-2 cells. Foods (Basel Switzerland) 11(2):194. https://doi.org/10.3390/foods11020194. (PMID: 10.3390/foods1102019435053925)
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A (2021) Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin Cancer Biol 69:5–23. (PMID: 10.1016/j.semcancer.2019.08.014)
Karuppiah A, Rajan R, Ramanathan M, Nagarajan A (2020) Cytotoxicity and synergistic effect of biogenically synthesized ternary therapeutic nanoconjugates comprising plant active principle, silver, and anticancer drug on MDA-MB-453 breast cancer cell line. Asian Pac J Cancer Prev 21:195–204. (PMID: 10.31557/APJCP.2020.21.1.19531983184)
Doddapaneni R, Patel K, Owaid IH, Singh M (2016) Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer. Drug Deliv 23:1232–1241. (PMID: 10.3109/10717544.2015.112447226701717)
Jin H, Pi J, Yang F, Jiang J, Wang X, Bai H, Shao M, Huang L, Zhu H, Yang P et al (2016) Folate-Chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep 6:30782. (PMID: 10.1038/srep30782274694904965748)
Soni K, Rizwanullah M, Kohli K (2018) Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol 46:15–31. (PMID: 10.1080/21691401.2017.1408124)
فهرسة مساهمة: Keywords: Anti-oncogenes; Breast cancer; Nanoemultion; Oxidative stress markers; Tissue structure
المشرفين على المادة: 0 (Emulsions)
0 (Plant Oils)
0 (Alginates)
0 (Antioxidants)
0 (Reactive Oxygen Species)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20240601 Date Completed: 20240601 Latest Revision: 20240601
رمز التحديث: 20240602
DOI: 10.1007/s11033-024-09619-x
PMID: 38824214
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4978
DOI:10.1007/s11033-024-09619-x