TRPV4-Expressing Tissue-Resident Macrophages Regulate the Function of Collecting Lymphatic Vessels via Thromboxane A2 Receptors in Lymphatic Muscle Cells.

التفاصيل البيبلوغرافية
العنوان: TRPV4-Expressing Tissue-Resident Macrophages Regulate the Function of Collecting Lymphatic Vessels via Thromboxane A2 Receptors in Lymphatic Muscle Cells.
المؤلفون: Schulz ME, Akerstrom VL, Song K, Broyhill SE, Li M, Lambert MD, Goldberg TB, Kataru RP, Shin J, Braun SE, Norton CE, Czepielewski RS, Mehrara BJ, Domeier TL, Zawieja SD, Castorena-Gonzalez JA
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2024 May 23. Date of Electronic Publication: 2024 May 23.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: Rationale: TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function.
Objective: To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics.
Methods and Results: Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction.
Conclusions: Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.
تواريخ الأحداث: Date Created: 20240603 Latest Revision: 20240603
رمز التحديث: 20240603
مُعرف محوري في PubMed: PMC11142127
DOI: 10.1101/2024.05.21.595189
PMID: 38826322
قاعدة البيانات: MEDLINE
الوصف
DOI:10.1101/2024.05.21.595189