دورية أكاديمية

PPIA dictates NRF2 stability to promote lung cancer progression.

التفاصيل البيبلوغرافية
العنوان: PPIA dictates NRF2 stability to promote lung cancer progression.
المؤلفون: Lu W; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China. wqlu@bio.ecnu.edu.cn.; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. wqlu@bio.ecnu.edu.cn., Cui J; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Wang W; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Hu Q; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Xue Y; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China., Liu X; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Gong T; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Lu Y; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Ma H; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China., Yang X; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China., Feng B; Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., Wang Q; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.; Guangxi Medical University Cancer Hospital, Nanning, China., Zhang N; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China., Xu Y; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China., Liu M; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China., Nussinov R; Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, USA.; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel., Cheng F; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA., Ji H; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China., Huang J; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China. huangjin@ecust.edu.cn.
المصدر: Nature communications [Nat Commun] 2024 Jun 03; Vol. 15 (1), pp. 4703. Date of Electronic Publication: 2024 Jun 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Carcinoma, Non-Small-Cell Lung*/metabolism , Carcinoma, Non-Small-Cell Lung*/pathology , Carcinoma, Non-Small-Cell Lung*/genetics , Kelch-Like ECH-Associated Protein 1*/metabolism , Kelch-Like ECH-Associated Protein 1*/genetics , Lung Neoplasms*/metabolism , Lung Neoplasms*/pathology , Lung Neoplasms*/genetics , NF-E2-Related Factor 2*/metabolism , Protein Stability* , Ubiquitination* , Peptidylprolyl Isomerase*/metabolism, Animals ; Female ; Humans ; Mice ; Cell Line, Tumor ; Disease Progression ; Mice, Nude ; Proteolysis
مستخلص: Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.
(© 2024. The Author(s).)
References: Cancer Cell. 2017 Nov 13;32(5):561-573.e6. (PMID: 29033244)
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92. (PMID: 31701148)
Redox Biol. 2020 Oct;37:101686. (PMID: 32911434)
Nat Commun. 2019 Nov 13;10(1):5151. (PMID: 31723131)
Annu Rev Pharmacol Toxicol. 2013;53:401-26. (PMID: 23294312)
Cancer Cell. 2012 Jul 10;22(1):66-79. (PMID: 22789539)
Haematologica. 2018 Sep;103(9):1472-1483. (PMID: 29880605)
Nat Med. 1999 Jul;5(7):714. (PMID: 10395300)
Exp Mol Med. 2018 Apr 16;50(4):1-13. (PMID: 29657327)
Cancer Sci. 2020 Feb;111(2):667-678. (PMID: 31828882)
Elife. 2017 Oct 02;6:. (PMID: 28967864)
Cancer Res. 2020 Nov 1;80(21):4815-4827. (PMID: 32907836)
Mol Cancer. 2011 Aug 26;10:102. (PMID: 21871105)
Genes Dev. 2014 Apr 1;28(7):708-22. (PMID: 24636985)
Cell Death Dis. 2013 Oct 31;4:e888. (PMID: 24176846)
Nat Genet. 2021 Mar;53(3):342-353. (PMID: 33558758)
Nat Med. 2015 Jun;21(6):572-80. (PMID: 26005854)
Bioorg Med Chem Lett. 2013 May 15;23(10):3039-43. (PMID: 23562243)
Nat Med. 2017 Nov;23(11):1362-1368. (PMID: 28967920)
Nat Rev Drug Discov. 2019 Apr;18(4):295-317. (PMID: 30610225)
J Eur Acad Dermatol Venereol. 2007 Jan;21(1):85-9. (PMID: 17207173)
Nat Commun. 2019 Sep 13;10(1):4190. (PMID: 31519898)
Cancer Cell. 2018 Jul 9;34(1):21-43. (PMID: 29731393)
Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. (PMID: 27322403)
Cancer Cell. 2023 Jan 9;41(1):164-180.e8. (PMID: 36563682)
Acta Biomater. 2021 Nov;135:543-555. (PMID: 34400305)
Oncogene. 2017 Aug 17;36(33):4719-4731. (PMID: 28394340)
Sci Signal. 2019 Jul 16;12(590):. (PMID: 31311847)
Mol Cell Biol. 2004 Dec;24(24):10941-53. (PMID: 15572695)
Sci Rep. 2016 Jun 14;6:27740. (PMID: 27297177)
Biophys Rev. 2020 Apr;12(2):435-441. (PMID: 32112372)
Nature. 2019 Jul;571(7763):127-131. (PMID: 31243371)
Cancer Res. 2019 Mar 1;79(5):889-898. (PMID: 30760522)
Toxicol Appl Pharmacol. 2010 Apr 1;244(1):66-76. (PMID: 19732782)
Genes Dev. 2013 Oct 15;27(20):2179-91. (PMID: 24142871)
BMC Med Genomics. 2009 Apr 24;2:18. (PMID: 19393097)
Cell Metab. 2020 Feb 4;31(2):267-283.e12. (PMID: 31866442)
Sci Adv. 2021 Nov 19;7(47):eabk1023. (PMID: 34788087)
Cell. 2019 Jul 11;178(2):316-329.e18. (PMID: 31257023)
Nat Rev Drug Discov. 2022 Feb;21(2):141-162. (PMID: 34862480)
J Mol Biol. 1993 Dec 20;234(4):1119-30. (PMID: 8263916)
Nature. 2011 Jul 06;475(7354):106-9. (PMID: 21734707)
Protein Sci. 1992 Sep;1(9):1092-9. (PMID: 1338979)
Cancer Res. 2018 Jul 15;78(14):3877-3887. (PMID: 29959151)
Nucleic Acids Res. 2010 Sep;38(17):5718-34. (PMID: 20460467)
Mol Cell. 2014 Nov 6;56(3):414-424. (PMID: 25458842)
J Transl Med. 2018 May 22;16(1):138. (PMID: 29788985)
Mol Cell Biol. 2020 Jun 15;40(13):. (PMID: 32284348)
J Med Chem. 2016 Apr 28;59(8):3991-4006. (PMID: 27031670)
Nat Genet. 2015 Dec;47(12):1475-81. (PMID: 26482881)
Cancer Discov. 2012 May;2(5):401-4. (PMID: 22588877)
Trends Cancer. 2021 Aug;7(8):790-804. (PMID: 34020912)
Nat Rev Cancer. 2019 Nov;19(11):611-624. (PMID: 31511663)
Cell Metab. 2012 Aug 8;16(2):139-41. (PMID: 22883227)
Cancer Res. 2020 Apr 15;80(8):1630-1643. (PMID: 31911550)
Acta Pharmacol Sin. 2004 Feb;25(2):146-7. (PMID: 14769200)
Nat Methods. 2014 Aug;11(8):783-784. (PMID: 25075903)
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10352-E10361. (PMID: 30309964)
Clin Cancer Res. 2017 Nov 1;23(21):6640-6649. (PMID: 28790108)
Trends Mol Med. 2016 Jul;22(7):578-593. (PMID: 27263465)
Nat Rev Cancer. 2009 Nov;9(11):810-20. (PMID: 19851316)
Clin Cancer Res. 2021 Feb 1;27(3):877-888. (PMID: 33077574)
Clin Cancer Res. 2008 Nov 15;14(22):7397-404. (PMID: 19010856)
Cancer Res. 2019 Jul 1;79(13):3251-3267. (PMID: 31040157)
Nat Genet. 2013 Oct;45(10):1113-20. (PMID: 24071849)
Science. 2008 Nov 7;322(5903):918-23. (PMID: 18988847)
Science. 1984 Nov 2;226(4674):544-7. (PMID: 6238408)
Nat Chem Biol. 2016 Feb;12(2):117-23. (PMID: 26656091)
Cell Metab. 2020 Feb 4;31(2):339-350.e4. (PMID: 31813821)
Biochem Pharmacol. 2021 Jun;188:114583. (PMID: 33915156)
Nature. 1989 Feb 2;337(6206):473-5. (PMID: 2644542)
Curr Res Pharmacol Drug Discov. 2022 May 12;3:100110. (PMID: 35620200)
J Med Internet Res. 2021 Jul 26;23(7):e27633. (PMID: 34309564)
Nat Rev Cancer. 2012 Jul 19;12(8):564-71. (PMID: 22810811)
Nat Med. 2021 Mar;27(3):491-503. (PMID: 33619369)
معلومات مُعتمدة: 81972828 National Natural Science Foundation of China (National Science Foundation of China)
المشرفين على المادة: 0 (KEAP1 protein, human)
0 (Kelch-Like ECH-Associated Protein 1)
0 (NF-E2-Related Factor 2)
0 (NFE2L2 protein, human)
EC 5.2.1.8 (PPIA protein, human)
EC 5.2.1.8 (Peptidylprolyl Isomerase)
تواريخ الأحداث: Date Created: 20240603 Date Completed: 20240603 Latest Revision: 20240613
رمز التحديث: 20240613
مُعرف محوري في PubMed: PMC11148020
DOI: 10.1038/s41467-024-48364-4
PMID: 38830868
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-48364-4