دورية أكاديمية

A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells.

التفاصيل البيبلوغرافية
العنوان: A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells.
المؤلفون: Sin WX; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Jagannathan NS; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore., Teo DBL; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Kairi F; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Fong SY; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore., Tan JHL; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore., Sandikin D; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Cheung KW; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Luah YH; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Wu X; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Raymond JJ; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore., Lim FLWI; Advanced Cell Therapy and Research Institute, Singapore (ACTRIS), Consortium for Clinical Research and Innovation, Singapore (CRIS), Singapore, Singapore.; Department of Haematology, Singapore General Hospital, Singapore, Singapore.; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.; SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore., Lee YH; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.; SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore., Seng MS; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.; SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.; Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore., Soh SY; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.; SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.; Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore., Chen Q; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore., Ram RJ; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore. rajeev@mit.edu.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. rajeev@mit.edu., Tucker-Kellogg L; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore. tuckerNUS@gmail.com.; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. tuckerNUS@gmail.com., Birnbaum ME; Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore. mbirnb@mit.edu.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. mbirnb@mit.edu.; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA. mbirnb@mit.edu.; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. mbirnb@mit.edu.
المصدر: Nature biomedical engineering [Nat Biomed Eng] 2024 Jun 04. Date of Electronic Publication: 2024 Jun 04.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer Nature
Original Publication: [London] : Macmillan Publishers Limited, [2016]-
مستخلص: The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4 + CAR T cells. Nature 602, 503–509 (2022). (PMID: 35110735916691610.1038/s41586-021-04390-6)
Alnefaie, A. et al. Chimeric antigen receptor T-cells: an overview of concepts, applications, limitations, and proposed solutions. Front. Bioeng. Biotechnol. 10, 797440 (2022). (PMID: 35814023925699110.3389/fbioe.2022.797440)
Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022). (PMID: 35190680886036010.1038/s41551-021-00842-6)
Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018). (PMID: 30030295827463110.1158/2326-6066.CIR-17-0405)
López-Cantillo, G., Urueña, C., Camacho, B. A. & Ramírez-Segura, C. CAR-T cell performance: how to improve their persistence? Front. Immunol. 13, 878209 (2022). (PMID: 35572525909768110.3389/fimmu.2022.878209)
Abou-El-Enein, M. et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov. 2, 408–422 (2021). (PMID: 34568831846212210.1158/2643-3230.BCD-21-0084)
Tyagarajan, S., Spencer, T. & Smith, J. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. Mol. Ther. Methods Clin. Dev. 16, 136–144 (2020). (PMID: 3198897810.1016/j.omtm.2019.11.018)
Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). (PMID: 29226797588248510.1056/NEJMoa1707447)
Mitra, A. et al. From bench to bedside: the history and progress of CAR T cell therapy. Front. Immunol. 14, 1188049 (2023). (PMID: 372561411022559410.3389/fimmu.2023.1188049)
Wells, D. A., Summerlin, J. & Halford, Z. A review of CAR T-cell therapies approved for the treatment of relapsed and refractory B-cell lymphomas. J. Hematol. Oncol. Pharm. 12, 30–42 (2022).
Bailey, S. R., Berger, T. R., Graham, C., Larson, R. C. & Maus, M. V. Four challenges to CAR T cells breaking the glass ceiling. Eur. J. Immunol. 53, 2250039 (2023). (PMID: 10.1002/eji.202250039)
Chen, A. J., Zhang, J., Agarwal, A. & Lakdawalla, D. N. Value of reducing wait times for chimeric antigen receptor T-cell treatment: evidence from randomized controlled trial data on tisagenlecleucel for diffuse large B-cell lymphoma. Value Health 25, 1344–1351 (2022). (PMID: 3534168910.1016/j.jval.2022.02.007)
Mikhael, J., Fowler, J. & Shah, N. Chimeric antigen receptor T-cell therapies: barriers and solutions to access. JCO Oncol. Pract. 18, 800–807 (2022). (PMID: 3613015210.1200/OP.22.00315)
Tully, S. et al. Impact of increasing wait times on overall mortality of chimeric antigen receptor T-cell therapy in large B-cell lymphoma: a discrete event simulation model. JCO Clin. Cancer Inform. https://doi.org/10.1200/CCI.19.00086 (2019).
Yang, J. et al. Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study. Blood Cancer J. 12, 1–9 (2022). (PMID: 34987165872870810.1038/s41408-022-00694-6)
Dickinson, M. J. et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-1276 (2023).
Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022). (PMID: 35332339937624310.1038/s41587-022-01245-x)
Aijaz, A. et al. Biomanufacturing for clinically advanced cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018). (PMID: 31011198659410010.1038/s41551-018-0246-6)
Dai, X. et al. Scaling up the manufacturing process of adoptive T cell immunotherapy. Biotechnol. J. 14, 1800239 (2019). (PMID: 10.1002/biot.201800239)
Vormittag, P., Gunn, R., Ghorashian, S. & Veraitch, F. S. A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018). (PMID: 2946276110.1016/j.copbio.2018.01.025)
Ludwig, J. & Hirschel, M. Methods and process optimization for large-scale CAR T expansion using the G-Rex cell culture platform. in Chimeric Antigen Receptor T Cells: Development and Production (eds Swiech, K., Malmegrim, K. C. R. & Picanço-Castro, V.) 165–177 (Springer, 2020); https://doi.org/10.1007/978-1-0716-0146-4_12.
Garcia-Aponte, O. F., Herwig, C. & Kozma, B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J. Biol. Eng. 15, 13–13 (2021). (PMID: 33849630804269710.1186/s13036-021-00264-7)
Watanabe, N., Mo, F. & McKenna, M. K. Impact of manufacturing procedures on CAR T cell functionality. Front. Immunol. 13, 876339 (2022). (PMID: 35493513904386410.3389/fimmu.2022.876339)
Iyer, R. K., Bowles, P. A., Kim, H. & Dulgar-Tulloch, A. Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front. Med. 5, 150 (2018). (PMID: 10.3389/fmed.2018.00150)
Baudequin, T., Nyland, R. & Ye, H. Objectives, benefits and challenges of bioreactor systems for the clinical-scale expansion of T lymphocyte cells. Biotechnol. Adv. 49, 107735 (2021). (PMID: 3378188910.1016/j.biotechadv.2021.107735)
Ganeeva, I. et al. Recent advances in the development of bioreactors for manufacturing of adoptive cell immunotherapies. Bioengineering 9, 808 (2022). (PMID: 36551014977471610.3390/bioengineering9120808)
Smith, T. A. CAR-T cell expansion in a Xuri cell expansion system W25. in Chimeric Antigen Receptor T Cells: Development and Production (eds Swiech, K., Malmegrim, K. C. R. & Picanço-Castro, V.) 151–163 (Springer, 2020); https://doi.org/10.1007/978-1-0716-0146-4_11.
Coeshott, C., Vang, B., Jones, M. & Nankervis, B. Large-scale expansion and characterization of CD3 + T-cells in the Quantum® cell expansion system. J. Transl. Med. 17, 258 (2019). (PMID: 31391068668648310.1186/s12967-019-2001-5)
Maschan, M. et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat. Commun. 12, 7200 (2021). (PMID: 34893603866483810.1038/s41467-021-27312-6)
Ran, T., Eichmüller, S. B., Schmidt, P. & Schlander, M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int. J. Cancer 147, 3438–3445 (2020). (PMID: 3253592010.1002/ijc.33156)
Blache, U., Popp, G., Dünkel, A., Koehl, U. & Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun. 13, 5225 (2022). (PMID: 36064867944501310.1038/s41467-022-32866-0)
Orentas, R. J., Dropulić, B. & de Lima, M. Place of care manufacturing of chimeric antigen receptor cells: opportunities and challenges. Semin. Hematol. https://doi.org/10.1053/j.seminhematol.2023.01.001 (2023).
Elsallab, M. & Maus, M. V. Expanding access to CAR T cell therapies through local manufacturing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01981-8 (2023).
Harrison, R. P., Ruck, S., Medcalf, N. & Rafiq, Q. A. Decentralized manufacturing of cell and gene therapies: overcoming challenges and identifying opportunities. Cytotherapy 19, 1140–1151 (2017). (PMID: 2879761210.1016/j.jcyt.2017.07.005)
Zhu, F. et al. Closed-system manufacturing of CD19 and dual-targeted CD20/19 chimeric antigen receptor T cells using the CliniMACS Prodigy device at an academic medical center. Cytotherapy 20, 394–406 (2018). (PMID: 2928797010.1016/j.jcyt.2017.09.005)
Jackson, Z. et al. Automated manufacture of autologous CD19 CAR-T cells for treatment of non-Hodgkin lymphoma. Front. Immunol. 11, 1941 (2020). (PMID: 32849651742710710.3389/fimmu.2020.01941)
Palani, H. K. et al. Decentralized manufacturing of anti CD19 CAR-T cells using CliniMACS Prodigy®: real-world experience and cost analysis in India. Bone Marrow Transplant. 58, 160–167 (2023). (PMID: 3634799910.1038/s41409-022-01866-5)
Castella, M. et al. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front. Immunol. 11, 482 (2020). (PMID: 32528460725942610.3389/fimmu.2020.00482)
O’Connor, J., Daita, K., Sei, J., Abraham, E. & Shi, Y. Manufacturing of patient specific novel T cell therapies using the Cocoon® Platform automated system. in Advancing Manufacture of Cell and Gene Therapies VII (2022).
Amini, A., Wiegmann, V., Patel, H., Veraitch, F. & Baganz, F. Bioprocess considerations for T-cell therapy: investigating the impact of agitation, dissolved oxygen, and pH on T-cell expansion and differentiation. Biotechnol. Bioeng. 117, 3018–3028 (2020). (PMID: 3256840710.1002/bit.27468)
Lamas, R., Ulrey, R., Ahuja, S. & Sargent, A. Changes to culture pH and dissolved oxygen can enhance chimeric antigen receptor T-cell generation and differentiation. Biotechnol. Prog. 38, e3275 (2022). (PMID: 3556743110.1002/btpr.3275)
Cunha, P. P. et al. Oxygen levels at the time of activation determine T cell persistence and immunotherapeutic efficacy. eLife 12, e84280 (2023). (PMID: 371661031022912010.7554/eLife.84280)
Ravindran, S. et al. Microbioreactors and perfusion bioreactors for microbial and mammalian cell culture. Biotechnology and Bioengineering (IntechOpen, 2019); https://doi.org/10.5772/intechopen.83825.
Tian, Y., Hu, R., Du, G. & Xu, N. Microfluidic chips: emerging technologies for adoptive cell immunotherapy. Micromachines 14, 877 (2023). (PMID: 374211091014594910.3390/mi14040877)
Lee, H. L. T., Boccazzi, P., Ram, R. J. & Sinskey, A. J. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 6, 1229–1235 (2006). (PMID: 1692940310.1039/b608014f)
Lee, K. S., Boccazzi, P., Sinskey, A. J. & Ram, R. J. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 11, 1730–1739 (2011). (PMID: 2144544210.1039/c1lc20019d)
Bower, D. M., Lee, K. S., Ram, R. J. & Prather, K. L. J. Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process. Biotechnol. Bioeng. 109, 1976–1986 (2012). (PMID: 2242258410.1002/bit.24498)
Mozdzierz, N. J. et al. A perfusion-capable microfluidic bioreactor for assessing microbial heterologous protein production. Lab Chip 15, 2918–2922 (2015). (PMID: 26055071462764410.1039/C5LC00443H)
Perez-Pinera, P. et al. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat. Commun. 7, 12211 (2016). (PMID: 27470089497457310.1038/ncomms12211)
McLaurin, C., Pham, Q. L. & Mahadevan, J. Do more with less: fit-for-purpose tools to speed up upstream process development for continuous biomanufacturing. Integrated Continuous Biomanufacturing V (2022).
Al-Lozi, A. & Lyons, D. Perfusion microbioreactor with integrated cell retention device. Integrated Continuous Biomanufacturing IV (2019).
Schwarz, H., Lee, K., Castan, A. & Chotteau, V. Optimization of medium with perfusion microbioreactors for high density CHO cell cultures at very low renewal rate aided by design of experiments. Biotechnol. Bioeng. 120, 2523–2541 (2023). (PMID: 3707943610.1002/bit.28397)
Roddie, C., O’Reilly, M., Dias Alves Pinto, J., Vispute, K. & Lowdell, M. Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy 21, 327–340 (2019). (PMID: 3068521610.1016/j.jcyt.2018.11.009)
Bajgain, P. et al. Optimizing the production of suspension cells using the G-Rex ‘M’ series. Mol. Ther. Methods Clin. Dev. 1, 14015 (2014). (PMID: 26015959436238010.1038/mtm.2014.15)
Amirache, F. et al. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 123, 1422–1424 (2014). (PMID: 2457849610.1182/blood-2013-11-540641)
Bari, R. et al. A distinct subset of highly proliferative and lentiviral vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy. Front. Immunol. 10, 2001 (2019). (PMID: 31507603671392510.3389/fimmu.2019.02001)
Zhao, Y., Stepto, H. & Schneider, C. K. Development of the first World Health Organization lentiviral vector standard: toward the production control and standardization of lentivirus-based gene therapy products. Hum. Gene Ther. Methods 28, 205–214 (2017). (PMID: 28747142562857110.1089/hgtb.2017.078)
Biasco, L. et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat. Cancer 2, 629–642 (2021). (PMID: 34345830761144810.1038/s43018-021-00207-7)
Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020). (PMID: 33020644844690910.1038/s41591-020-1061-7)
Munoz, A. M. et al. Dexamethasone potentiates chimeric antigen receptor T cell persistence and function by enhancing IL-7Rα expression. Mol. Ther. 32, 527–539 (2024). (PMID: 3814072610.1016/j.ymthe.2023.12.017)
Good, Z. et al. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022). (PMID: 360972231091708910.1038/s41591-022-01960-7)
Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021). (PMID: 33795428804910310.1126/science.aba1786)
Song, H. W. et al. CAR-T cell expansion platforms yield distinct T cell differentiation states. Cytotherapy. https://doi.org/10.1016/j.jcyt.2024.03.003 (2024).
Anderson, N. D. et al. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat. Med. 29, 1700–1709 (2023). (PMID: 374078401035393110.1038/s41591-023-02415-3)
Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022). (PMID: 35675405917707510.1126/sciadv.abj2820)
Zhang, D. K. Y. et al. Enhancing CAR-T cell functionality in a patient-specific manner. Nat. Commun. 14, 506 (2023). (PMID: 36720856988970710.1038/s41467-023-36126-7)
Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020). (PMID: 33326785783070810.1016/j.celrep.2020.108500)
Costariol, E. et al. Demonstrating the manufacture of human CAR-T cells in an automated stirred-tank bioreactor. Biotechnol. J. 15, 2000177 (2020). (PMID: 10.1002/biot.202000177)
Müller, D. et al. Process intensification in the biopharma industry: improving efficiency of protein manufacturing processes from development to production scale using synergistic approaches. Chem. Eng. Process. Process. Intensif. 171, 108727 (2022). (PMID: 10.1016/j.cep.2021.108727)
Stepper, L. et al. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Bioprocess. Biosyst. Eng. 43, 1431–1443 (2020). (PMID: 32266469732007010.1007/s00449-020-02337-1)
Shah, N. et al. Dual targeted CD20/19 CAR-T cell production using the Clinimacs® Prodigy system. Biol. Blood Marrow Transplant. 23, S162 (2017). (PMID: 10.1016/j.bbmt.2016.12.274)
Lipsitz, Y. Y. et al. A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 19, 1383–1391 (2017). (PMID: 2893519010.1016/j.jcyt.2017.06.009)
Harrison, R. P., Zylberberg, E., Ellison, S. & Levine, B. L. Chimeric antigen receptor–T cell therapy manufacturing: modelling the effect of offshore production on aggregate cost of goods. Cytotherapy 21, 224–233 (2019). (PMID: 3077028510.1016/j.jcyt.2019.01.003)
Odeh-Couvertier, V. Y. et al. Predicting T-cell quality during manufacturing through an artificial intelligence-based integrative multiomics analytical platform. Bioeng. Transl. Med. 7, e10282 (2022). (PMID: 35600660911570210.1002/btm2.10282)
Lipsitz, Y. Y., Timmins, N. E., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016). (PMID: 2705499510.1038/nbt.3525)
Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016). (PMID: 2688586010.1016/j.immuni.2016.01.021)
Jiang, J. & Ahuja, S. Addressing patient to patient variability for autologous CAR T therapies. J. Pharm. Sci. 110, 1871–1876 (2021). (PMID: 3334053210.1016/j.xphs.2020.12.015)
Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022). (PMID: 35503659919752910.1172/JCI150807)
Klysz, D. D. et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 42, 266–282.e8 (2024). (PMID: 3827815010.1016/j.ccell.2024.01.002)
Amini, A. & Veraitch, F. Glucose deprivation enriches for central memory T cells during chimeric antigen receptor-T cell expansion. Cytotherapy 21, S30–S31 (2019). (PMID: 10.1016/j.jcyt.2019.03.348)
Shen, L. et al. Metabolic reprogramming by ex vivo glutamine inhibition endows CAR-T cells with less-differentiated phenotype and persistent antitumor activity. Cancer Lett. 538, 215710 (2022). (PMID: 3548944610.1016/j.canlet.2022.215710)
Zhang, M. et al. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J. Transl. Med. 19, 499 (2021). (PMID: 34876185865027110.1186/s12967-021-03165-x)
Baradez, M.-O., Biziato, D., Hassan, E. & Marshall, D. Application of Raman spectroscopy and univariate modelling as a process analytical technology for cell therapy bioprocessing. Front. Med. 5, 47 (2018). (PMID: 10.3389/fmed.2018.00047)
Van Beylen, K. et al. Lactate-based model predictive control strategy of cell growth for cell therapy applications. Bioengineering 7, 78 (2020). (PMID: 32698462755270710.3390/bioengineering7030078)
Van Beylen, K. et al. Real-time cell growth control using a lactate-based model predictive controller. Processes 11, 22 (2023). (PMID: 10.3390/pr11010022)
Liu, Z., Chen, J., Wang, K., Wang, B. & Zhang, C. Current status and opportunities in adaptive data analysis for therapeutic cell manufacturing. Curr. Opin. Biomed. Eng. 20, 100351 (2021). (PMID: 10.1016/j.cobme.2021.100351)
Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998). (PMID: 976538211025410.1128/JVI.72.11.8463-8471.1998)
Gordon, K. S. et al. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat. Biomed. Eng. 6, 855–866 (2022). (PMID: 35710755938944210.1038/s41551-022-00896-0)
تواريخ الأحداث: Date Created: 20240604 Latest Revision: 20240604
رمز التحديث: 20240605
DOI: 10.1038/s41551-024-01219-1
PMID: 38834752
قاعدة البيانات: MEDLINE
الوصف
تدمد:2157-846X
DOI:10.1038/s41551-024-01219-1