دورية أكاديمية

Southern Africa's Great Escarpment as an amphitheater of climate-driven diversification and a buffer against future climate change in bats.

التفاصيل البيبلوغرافية
العنوان: Southern Africa's Great Escarpment as an amphitheater of climate-driven diversification and a buffer against future climate change in bats.
المؤلفون: Taylor PJ; Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa., Kearney TC; Ditsong National Museum of Natural History, Pretoria, South Africa.; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa., Clark VR; Afromontane Research Unit & Department of Geography, University of the Free State: Qwaqwa Campus, Phuthaditjhaba, South Africa., Howard A; Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa., Mdluli MV; Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa., Markotter W; Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa., Geldenhuys M; Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa., Richards LR; Durban Natural Science Museum, Durban, South Africa., Rakotoarivelo AR; Afromontane Research Unit & Department of Zoology & Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, South Africa., Watson J; Department of Economic Development, Tourism and Environmental Affairs, Biodiversity Research, Bloemfontein, South Africa., Balona J; Gauteng and Northern Regions Bat Interest Group, Johannesburg, South Africa., Monadjem A; Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini.; Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa.
المصدر: Global change biology [Glob Chang Biol] 2024 Jun; Vol. 30 (6), pp. e17344.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Chiroptera*/physiology , Chiroptera*/genetics , Climate Change* , DNA, Mitochondrial*/genetics , DNA, Mitochondrial*/analysis, Animals ; Africa, Southern ; Phylogeny ; Genetic Speciation ; Phylogeography ; Animal Distribution
مستخلص: Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.
(© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)
References: Adams, R. A., & Kwiecinski, G. (2018). Sonar surveys for bat species richness and activity in the southern Kalahari Desert, Kgalagadi Transfrontier Park, South Africa. Diversity, 10, 103. https://doi.org/10.3390/d10030103.
Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A., & Giannini, N. P. (2018). Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution, 25, 37–70. https://doi.org/10.1007/s10914‐016‐9363‐8.
Anisimova, M., Gil, M., Dufayard, J.‐F., Dessimoz, C., & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood‐based approximation schemes. Systematic Biology, 60, 685–699. https://doi.org/10.1093/sysbio/syr041.
Bayliss, J., Bittencourt‐Silva, G. B., Branch, W. R., Bruessow, C., Collins, S., Congdon, T. C. E., Conradie, W., Curran, M., Daniels, S., Darbyshire, I., Farooq, H., Fishpool, L., Grantham, G., Magombo, Z., Matimele, H., Monadjem, A., Monteiro, J., Osborne, J., Saunders, J., … Platts, P. J. (2024). The South East Africa montane archipelago (SEAMA)—a biogeographical appraisal of a threatened ecoregion. Scientific Reports, 14, 5971. https://doi.org/10.1038/s41598‐024‐54671‐z.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen‐Geiger climate classification maps at 1‐km resolution. Scientific Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214.
Benda, P., Uvizl, M., Eiseb, S. J., & Avenant, N. L. (2024). On the systematic position of the horseshoe bats (Mammalia: Chiroptera) from Lesotho. Mammalia, 88, 239–258. https://doi.org/10.1515/mammalia‐2023‐0119.
Benda, P., & Vallo, P. (2012). New look on the geographical variation in Rhinolophus clivosus with description of a new horseshoe bat species from Cyrenaica, Libya. Vespertilio, 16, 69–96.
Bowie, R. C. K., Fjeldså, J., & Hackett, S. J. (2004). Biological and biogeographical patterns in the African thrushes (Turdidae). African Zoology, 39(1), 53–62.
Brain, C. K. (1985). Temperature‐induced environmental changes as biological isolating mechanisms in southern Africa. In E. S. Vrba (Ed.), Species and speciation (pp. 45–52). Transvaal Museum.
Bryja, J., Kostin, D., Meheretu, Y., Šumbera, R., Bryjová, A., Kasso, M., Mikula, O., & Lavrenchenko, L. A. (2018). Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient. Molecular Phylogenetics and Evolution, 118, 75–87. https://doi.org/10.1016/j.ympev.2017.09.020.
Bryja, J., Mikula, O., Patzenhauerová, H., Oguge, N. O., Šumbera, R., & Verheyen, E. (2014). The role of dispersal and vicariance in the Pleistocene history of an east African mountain rodent, Praomys delectorum. Journal of Biogeography, 41(1), 196–208. https://doi.org/10.1111/jbi.12195.
Carbutt, C. (2019). The Drakensberg Mountain Centre: A necessary revision of southern Africa's high‐elevation centre of plant endemism. South African Journal of Botany, 124, 508–529.
Carbutt, C. (2023). The greater midlands—a mid‐elevation centre of floristic endemism in summer‐rainfall eastern South Africa. Diversity, 15, 1137. https://doi.org/10.3390/d15111137.
Carbutt, C., Henwood, W. D., & Gilfedder, L. A. (2017). Global plight of native temperate grasslands: going, going, gone? Biodiversity and Conservation, 26, 2911–2932. https://doi.org/10.1007/s10531‐017‐1398‐5.
Clark, V. R., Barker, N., & Mucina, L. (2011c). Taking the scenic route – The southern great escarpment (South Africa) as part of the cape to Cairo floristic highway. Plant Ecology and Diversity, 4, 313–328.
Clark, V. R., Barker, N. P., McMaster, C., & Mucina, L. (2011). The Boschberg (Somerset East, eastern cape)—A floristic cross‐roads of the southern great escarpment. South African Journal of Botany, 77, 94–104.
Clark, V. R., Barker, N. P., & Mucina, L. (2011a). The great escarpment of southern Africa—a new frontier for biodiversity exploration. Biodiversity and Conservation, 20, 2543–2561.
Clark, V. R., Barker, N. P., & Mucina, L. (2011b). The Roggeveldberge – Notes on a botanically hot area on a cold corner of the southern great escarpment. South African Journal of Botany, 77, 112–126.
Clark, V. R., Burrows, J. E., Turpin, B. C., Balkwill, K., Lötter, M., & Siebert, S. J. (2022). The Limpopo–Mpumalanga–Eswatini escarpment—Extra‐ordinary endemic plant richness and extinction risk in a summer rainfall montane region of southern Africa. Frontiers in Ecology and Evolution, 10, 765854. https://doi.org/10.3389/fevo.2022.765854.
Clark, V. R., Timberlake, J. R., Hyde, M. A., Mapaura, A., Chapano, C., Coates Palgrave, M., Wursten, B. T., Ballings, P., Plowes, D. C. H., Muller, T., Childes, S. L., Dondeyne, S., Burrows, J. E., Burrows, S. M., Barker, N. P., Linder, H. P., & McGregor, G. K. (2017). A first comprehensive account of floristic diversity and endemism on the Nyanga massif, MH (Zimbabwe–Mozambique). Kirkia, 19, 1–53.
Couvreur, T. L. P., Dauby, G., Blach‐Overgaard, A., Deblauwe, V., Dessein, S., Droissart, V., Hardy, O. J., Harris, D. J., Janssens, S. B., Ley, A. C., Mackinder, B. A., Sonké, B., Sosef, M. S. M., Stévart, T., Svenning, J.‐C., Wieringa, J. J., Faye, A., Missoup, A. D., Tolley, K. A., … Sepulchre, P. (2021). Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biological Reviews, 96, 16–51. https://doi.org/10.1111/brv.12644.
Csorba, G., Ujhelyi, P., & Thomas, N. (2003). Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books.
Curran, M., Kopp, M., Ruedi, M., & Bayliss, J. A. (2022). A new species of horseshoe bat (Chiroptera: Rhinolophidae) from mount Namuli, Mozambique. Acta Chiropterologica, 24, 19–40.
DeMenocal, P. B. (1995). Plio‐Pleistocene African Climate. Science, 270, 53–59.
DeMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters, 220, 3–24.
Demos, T. C., Webala, P. W., Goodman, S. M., Kerbis Peterhans, J. C., Bartonjo, M., & Patterson, B. D. (2019). Molecular phylogenetics of the African horseshoe bats (Chiroptera: Rhinolophidae): Expanded geographic and taxonomic sampling of the Afrotropics. BMC Evolutionary Biology, 19, 166. https://doi.org/10.1186/s12862‐019‐1485‐1.
Dianat, M., Konečný, A., Lavrenchenko, L. A., Kerbis Peterhans, J. C., Demos, T. C., Nicolas, V., Ortiz, D., & Bryja, J. (2024). How to cross the desert if you are small and need mountains? Out‐of‐Ethiopia dispersal in Afromontane shrews. Journal of Biogeography, 51, 230–245. https://doi.org/10.1111/jbi.14748.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An ecoregion‐based approach to protecting half the terrestrial realm. Bioscience, 67, 534–545.
Dixon, R. (2011). Relationships in Clivia. Clivia, 13, 63–81.
Dool, S. E., Puechmaille, S. J., Foley, N. M., Allegrini, B., Bastian, A., Mutumi, G. L., Maluleke, T. G., Odendaal, L. J., Teeling, E. C., & Jacobs, D. S. (2016). Nuclear introns outperform mitochondrial DNA in inter‐specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 97, 196–212. https://doi.org/10.1016/j.ympev.2016.01.003.
Drummond, A. J., Rambaut, A., & Suchard, M. A. (2018). BEAST v1.10.4. Available from https://github.com/beast‐dev/beast‐mcmc.
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
Eick, G. N., Jacobs, D. S., & Matthee, C. A. (2005). A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 22(9), 1869–1886. https://doi.org/10.1093/molbev/msi180.
Fahr, J., & Ebigbo, N. M. (2003). A conservation assessment of the bats of the Simandou range, Guinea, with the first record of Myotis welwitschii (gray, 1866) from West Africa. Acta Chiropterologica, 5, 125–141.
Festa, F., Ancillotto, L., Santini, L., Pacifici, M., Rocha, R., Toshkova, N., Amorim, F., Benítez‐López, A., Domer, A., Hamidović, D., Kramer‐Schadt, S., Mathews, F., Radchuk, V., Rebelo, H., Ruczynski, I., Solem, E., Tsoar, A., Russo, D., & Razgour, O. (2023). Bat responses to climate change: a systematic review. Biological Reviews, 98, 19–33. https://doi.org/10.1111/brv.12893.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
Fitchett, J. M., Grab, S. W., Bamford, M. K., & Mackay, A. W. (2016). A multi‐disciplinary review of late quaternary palaeoclimates and environments for Lesotho. South African Journal of Science, 112(7–8), 1–9. https://doi.org/10.17159/sajs.2016/20160045.
Fjeldså, J., Bowie, R. C. K., & Rahbek, C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249–265.
Fjeldså, J., & Lovett, J. C. (1997). Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centers. Biodiversity and Conservation, 6, 325–346.
Foley, N. M., Thong, V. D., Soisook, P., Goodman, S. M., Armstrong, K. N., Jacobs, D. S., & Teeling, E. C. (2015). How and why overcome the impediments to resolution: Lessons from rhinolophid and hipposiderid bats. Molecular Biology and Evolution, 32(2), 313–333.
Galley, C., Bytebier, B., Bellstedt, D. U., & Linder, P. H. (2007). The cape element in the Afrotemperate flora: From cape to Cairo? Proceedings of the Royal Society B: Biological Sciences, 274, 535–543. https://doi.org/10.1098/rspb.2006.0046.
Ganem, G., Dufour, C. M. S., Avenant, N. L., Caminade, P., Eiseb, S. J., Tougard, C., & Pillay, N. (2020). An update on the distribution and diversification of Rhabdomys sp. (Muridae, Rodentia). Journal of Vertebrate Biology, 69(2), 1–17. https://doi.org/10.25225/jvb.20013.
Goodman, S. M., Rakotondramanana, C. F., Ramasindrazana, B., Kearney, T., Monadjem, A., Schoeman, M. C., Taylor, P. J., Naughton, K., & Appleton, B. (2015). An integrative approach to characterize Malagasy bats of the subfamily Vespertilioninae gray, 1821, with the description of a new species of Hypsugo. Zoological Journal of the Linnean Society, 173, 988–1018. https://academic.oup.com/zoolinnean/article‐abstract/173/4/988/2449840.
Grab, S. (1996). Debris deposits in the high Drakensberg, South Africa: Possible indicators for plateau, niche and cirque glaciation. Zeitschrift für Geomorphologie, 103, 389–403.
Guindon, S., Dufayard, J.‐F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321.
Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S., Finstermeier, K., Sabin, R., Gilissen, E., Sonet, G., Nagy, Z. T., Lenglet, G., Mayer, F., & Savolainen, V. (2013). Next‐generation museomics disentangles one of the largest primate radiations. Systematic Biology, 62, 539–554. https://doi.org/10.1093/sysbio/syt018.
Hahn, N. (2017). Endemic flora of the Soutpansberg, Blouberg and Makgabeng. South African Journal of Botany, 113, 324–336.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST 3.2: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4, 9 pp.
Harper, G. (1969). Periglacial evidence in South Africa during the Pleistocene epoch. Palaeoecology of Africa and the Surrounding Islands, 4, 71–91.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281.
Howard, A., Monadjem, A., MacFadyen, D., & Chimimba, C. T. (2022). Testing the efficacy of bat monitoring methods for identification and species surveys in KwaZulu‐Natal province, South Africa. African Zoology, 57(4), 180–194.
Huntley, B. J. (2023). The Angolan escarpment zone, The Angolan escarpment zone. In Ecology of Angola. Springer. https://doi.org/10.1007/978‐3‐031‐18923‐4_18.
Huntley, B. J., Russo, V., Lages, F., & Ferrand, N. (2019). Biodiversity of Angola. Science & conservation: a modern synthesis. Springer Nature.
Hutson, A. M., Rossiter, S. J., & Csorba, G. (2019). Family Rhinolophidae (Horseshoe Bats). In D. E. Wilson & R. A. Mittermeier (Eds.), Handbook of the mammals of the world (Vol. 9, pp. 260–333). Bats.
Jacobs, D. S., Babiker, H., Bastian, A., Kearney, T., Van Eeden, R., & Bishop, J. M. (2013). Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera). PLoS One, 8(12), e82614.
Jacobs, D. S., Barclay, R. M. R., & Schoeman, M. C. (2005). Foraging and roosting ecology of a rare insectivorous bat species, Laephotis wintoni (Thomas, 1901), Vespertilionidae. Acta Chiropterologica, 7(1), 101–109. https://doi.org/10.3161/1733‐5329(2005)7[101:FAREOA]2.0.CO;2.
Jacobs, D. S., Catto, S., Mutumi, G. L., Finger, N., & Webala, P. W. (2017). Testing the sensory drive hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus). PLoS One, 12(11), e0187769. https://doi.org/10.1371/journal.pone.0187769.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A., & von Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.
Kearney, T. C., & Seamark, E. C. J. (2005). Morphometric analysis of cranial and external characters of Laephotis Thomas, 1901 (Mammalia: Chiroptera: Vespertilionidae) from southern Africa. Annals of the Transvaal Museum, 42, 71–87.
Koopman, K. F. (1983). Two general problems involved in systematics and zoogeography of bats. In G. J. Rhodin & K. Miyata (Eds.), Advances in herpetology and evolutionary biology. Essays in honor of Ernest E. Williams (pp. 412–415). Museum of Comparative Zoology.
Krásová, J., Mikula, O., Bryja, J., Baptista, N. L., António, T., Aghová, T., & Šumbera, R. (2021). Biogeography of Angolan rodents: The first glimpse based on phylogenetic evidence. Diversity and Distributions, 27, 2571–2583.
Krásová, J., Mikula, O., Lavrenchenko, L. A., Šumbera, R., Meheretu, Y., & Bryja, J. (2022). A new rodent species of the genus Mus (Rodentia: Muridae) confirms the biogeographical uniqueness of the isolated forests of Southern Ethiopia. Organisms, Diversity and Evolution, 22, 491–509. https://doi.org/10.1007/s13127‐022‐00539‐x.
Laverty, T. M., & Berger, J. (2020). Do bats seek clean water? A perspective on biodiversity from the Namib Desert. Biological Conservation, 248, 108686. https://doi.org/10.1016/j.biocon.2020.108686.
Lavrenchenko, L. A., Voyta, L. L., & Hutterer, R. (2016). Diversity of shrews in Ethiopia, with the description of two new species of Crocidura (Mammalia: Lipotyphla: Soricidae). Zootaxa, 4196(1), 38. https://doi.org/10.11646/zootaxa.4196.1.2.
Lawson, L., Bates, J., Menegon, M., & Loader, S. (2015). Divergence at the edges: Peripatric isolation in the montane spiny throated reed frog complex. BMC Evolutionary Biology, 15, 128. 128.10.1186/s12862‐015‐0384‐3.
Linden, B., Dalton, D. L., Ralph, T. M. C., Silva, I., Kotze, A., & Taylor, P. J. (2020). Adding another piece to the southern African Cercopithecus monkey phylogeography puzzle. African Zoology, 55(4), 351–361. https://doi.org/10.1080/15627020.2020.1835534.
Linder, H. P., de Klerk, H. M., Born, J., Burgess, N. D., Fjeldså, J., & Rahbek, C. (2012). The partitioning of Africa: Statistically defined biogeographical regions in sub‐Saharan Africa. Journal of Biogeography, 39, 1189–1205.
Maswanganye, K. A., Cunningham, M. J., Bennett, N. C., Chimimba, C. T., & Bloomer, P. (2017). Life on the rocks: Multilocus phylogeography of rock hyrax (Procavia capensis) from southern Africa. Molecular Phylogenetics and Evolution, 114, 49–62. https://doi.org/10.1016/j.ympev.2017.04.006.
Matthee, C. A., & Flemming, A. F. (2002). Population fragmentation in the southern rock agama, Agama atra: More evidence for vicariance in southern Africa. Molecular Ecology, 11, 465–471.
Matthee, C. A., & Robinson, T. J. (1996). Mitochondrial DNA differentiation among geographical populations of Pronolagus rupestris, Smith's red rock rabbit (Mammalia: Lagomorpha). Heredity, 76, 514–523.
Mendelsohn, J. M., Huntley, B. J., & Vaz Pinto, P. (2023). Monograph on endemism in the highlands and escarpments of Angola and Namibia. Namibian Journal of Environment, 8, 330.
Mills, M. S. L., Olmos, F., Melo, M., & Dean, W. R. J. (2011). Mount Moco: Its importance to the conservation of Swierstra's francolin Pternistis swierstrai and the Afromontane avifauna of Angola. Bird Conservation International, 21, 119–133.
Minh, B. W. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015.
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots: Distribution and protection of conservation priority areas (pp. 3–22). Springer.
Moir, M. I., Richards, L. R., Rambau, R. V., & Cherry, M. I. (2020). Bats of eastern cape and southern Kwazulu‐Natal forests, South Africa: Diversity, call library and range extensions. Acta Chiropterologica, 22(2), 365–381. https://doi.org/10.3161/15081109ACC2020.22.2.011.
Monadjem, A., Demos, T. C., Dalton, D. L., Webala, P. W., Musila, S., Kerbis Peterhans, J. C., & Patterson, B. D. (2021). A revision of pipistrelle‐like bats (Mammalia: Chiroptera: Vespertilionidae) in East Africa with the description of new genera and species. Zoological Journal of the Linnean Society, 191, 1114–1146. https://doi.org/10.1093/zoolinnean/zlaa087.
Monadjem, A., Richards, L., Taylor, P. J., & Stoffberg, S. (2013). High diversity of pipistrelloid bats (Vespertilionidae: Hypsugo, Neoromicia, and pipistrellus) in a west African rainforest with the description of a new species. Zoological Journal of the Linnean Society, 167, 191–207. https://doi.org/10.1111/j.1096‐3642.2012.00871.x.
Monadjem, A., Taylor, P. J., Cotterill, F. P. D., & Schoeman, M. C. (2020). Bats of southern and central Africa: a biogeographic and taxonomic synthesis (2nd ed.). Wits University Press.
Montgelard, C., Muller, T., Arnal, V., Maree, S., Taylor, P. J., Sands, F., Robinson, T., & Matthee, C. (2023). Diversification and evolutionary history of the African laminated‐toothed rats (Rodentia, Otomyini). Molecular Phylogenetics and Evolution, 183, 107779. https://doi.org/10.1016/j.ympev.2023.107779.
Morales, A. E., Ruedi, M., Field, K., & Carstens, B. C. (2019). Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, myotis. Evolution, 73, 2263–2280. https://doi.org/10.1111/evo.13849.
Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute.
Mutumi, G. L., Jacobs, D. S., & Winker, H. (2016). Sensory drive mediated by climatic gradients partially explains divergence in acoustic signals in two horseshoe bat species, Rhinolophus swinnyi and Rhinolophus simulator. PLoS One, 11(1), e0148053. https://doi.org/10.1371/journal.pone.0148053.
NASA JPL. (2013). NASA shuttle radar topography Mission global 1 arc second. Distributed by NASA EOSDIS Land Processes Distributed Active Archive Center https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003.
Nguyen, L.‐T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274.
Nicolas, V., Fabre, P.‐H., Bryja, J., Denys, C., Verheyen, E., Missoup, A.‐D., Olayemi, A., Katuala, P., Dudu, A., & Colyn, M. (2020). The phylogeny of the African wood mice (Muridae, Hylomyscus) based on complete mitochondrial genomes and five nuclear genes reveals their evolutionary history and undescribed diversity. Molecular Phylogenetics and Evolution, 144, 106703. https://doi.org/10.1016/j.ympev.2019.106703.
Odendaal, L. J., & Jacobs, D. S. (2011). Morphological correlates of echolocation frequency in the endemic cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae). Journal of Comparative Physiology, 197, 435–446.
Odendaal, L. J., Jacobs, D. S., & Bishop, J. M. (2014). Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity. BMC Evolutionary Biology, 14, 60. https://doi.org/10.1186/1471‐2148‐14‐60.
Onditi, K. O., Demos, T. C., Kerbis Peterhans, J., Chen, Z. Z., Bryja, J., Lavrenchenko, L. A., Musila, S., Verheyen, E., van de Perre, F., Akaibe, B. D., de la Sancha, N. U., & Jiang, X. L. (2021). Historical biogeography, systematics, and integrative taxonomy of the non‐Ethiopian speckled pelage brush‐furred rats (Lophuromys flavopunctatus group). BMC Ecology and Evolution, 21, 89 (2021). https://doi.org/10.1186/s12862‐021‐01813‐w.
Outlaw, R. K., Voelker, G., & Outlaw, D. C. (2007). Molecular systematics and historical biogeography of the rock‐thrushes (Muscicapidae: Monticola). The Auk, 124, 561–577.
Partridge, T. C., & Maud, R. R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology, 90, 179–208.
Pauli, H., & Halloy, S. (2019). High Mountain ecosystems under climate Change. Oxford Research Encyclopedia of Climate Science. Retrieved 19 April 2024 from https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore‐9780190228620‐e‐764.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Pierce, M. W., Kearney, T., Seamark, E. C. J., Curran, M., Kopp, M., & Keith, M. (2011). New records and echolocation information of Laephotis botswanae (Chiroptera, Vespertilionidae) from southern Africa. Durban Natural Science Museum Novitates, 34, 39–44.
QGIS Development Team. (2023). QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.
Quang, M. B., Nguyen, M. A. T., & von Haeseler, A. (2014). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024.
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R‐project.org.
Rambaut, A. (2018). FigTree v 1.4.4. Available from http://tree.bio.ed.ac.uk/ software/figtree/.
Rambaut, A., & Drummond, A. J. (2018a). TreeAnnotator v.1.10.4. Available from http://beast.community/.
Rambaut, A., & Drummond, A. J. (2018b). LogCombiner v.1.10.4. Available from http://beast.community/.
Rambaut, A., Drummond, A. J., Xie, D., Balee, G., & Suchard, M. A. (2021). Trace v1.7.2. Available from http://beast.bio.ed.ac.uk/Tracer.
Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz‐Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., Cassemiro, F. A. S., Rahbek, C., & Colwell, R. K. (2018). Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452. https://doi.org/10.1126/science.aar5452.
Rourke, J. P. (2002). Clivia mirabilis (Amaryllidaceae: Haemantheae) a new species from northern cape, South Africa. Bothalia, 32, 1–7.
Ruedi, M., Stadelmann, B., Gager, Y., Douzery, E. J. P., Francis, C. M., Lin, L.‐K., Guillén‐Servent, A., & Cibois, A. (2013). Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus myotis (Mammalia, Chiroptera). Molecular Phylogenetics and FigTreeEvolution, 69, 437–449. https://doi.org/10.1016/j.ympev.2013.08.011.
Schefuss, E., Schouten, S., Jansen, J. H. F., & Sinnighe Damste, J. S. (2003). African vegetation controlled by tropical sea surface temperatures in the mid‐Pleistocene period. Nature, 422, 418–421.
Schoeman, C., & Jacobs, D. (2003). Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia, 134(1), 154–162. https://doi.org/10.1007/s00442‐002‐1107‐1.
Schoeman, M. C., Cotterill, F. P. D., Taylor, P. J., & Monadjem, A. (2013). Using potential distributions to explore environmental correlates of bat species richness in southern Africa: Effects of model selection and taxonomy. Current Zoology, 59(3), 279–293. https://doi.org/10.1093/czoolo/59.3.279.
Schoeman, M. C., & Jacobs, D. S. (2008). The relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in Southern Africa. PLoS One, 3(11), e3715. https://doi.org/10.1371/journal.pone.0003715.
Scott, L., Anderson, H. M., & Anderson, J. M. (1997). Vegetation history. In R. M. Cowling, et al. (Eds.), Vegetation of southern Africa. Cambridge University Press.
Sinclair, I., Hockey, P., Tarboton, W., Perrins, N., Rollinson, D., & Ryan, P. (2020). Sasol birds of southern Africa (5th ed.). Penguin Random House Publishers.
Skinner, J. D., & Chimimba, C. T. (2005). The mammals of the southern African subregion. Cambridge University Press.
Stadelmann, B., Lin, L.‐K., Kunz, T. H., & Ruedi, M. (2007). Molecular phylogeny of the New World myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43, 32–48.
Stoffberg, S., Schoeman, M. C., & Matthee, C. A. (2012). Correlated genetic and ecological diversification in a widespread southern African horseshoe bat. PLoS One, 7(2), e31946. https://doi.org/10.1371/journal.pone.0031946.
Šumbera, R., Krásová, J., Lavrenchenko, L. A., Mengistu, S., Bekele, A., Mikula, O., & Bryja, J. (2018). Ethiopian highlands as a cradle of the African fossorial root‐rats (genus Tachyoryctes), the genetic evidence. Molecular Phylogenetics and Evolution, 126, 105–115. https://doi.org/10.1016/j.ympev.2018.04.003.
Swart, B. L., Tolley, K. A., & Matthee, C. A. (2009). Climate change drives speciation in the southern rock agama (Agama atra) in the cape floristic region, South Africa. Journal of Biogeography, 36, 78–87.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.
Taylor, P. J., Denys, C., & Cotterill, F. P. D. (2019). Taxonomic anarchy or an inconvenient truth for conservation? Accelerated species discovery reveals evolutionary patterns and heightened extinction threat in African small mammals. Mammalia, 83, 313–329. https://doi.org/10.1515/mammalia‐2018‐0031.
Taylor, P. J., Goodman, S. M., Macdonald, A., Richards, L., Cotterill, F. P. D., Stoffberg, S., Kearney, M. A., & Schoeman, M. C. (2018). Integrative taxonomy resolves species limits and identification of cryptic small rhinolophid bats in southern Africa, with the description of three new species from Mozambique. Zoological Journal of the Linnean Society, 184, 1249–1276. https://doi.org/10.1093/zoolinnean/zly024/4984486.
Taylor, P. J., Kearney, K., Dalton, D., Mataruse, G., Kelly, C. M. R., & Barker, N. P. (2019). Biomes, geology and past climate drive speciation of laminate‐toothed rats on south African mountains (Murinae: Otomys). Zoological Journal of the Linnean Society, 189, 1046–1066. https://doi.org/10.1093/zoolinnean/zlz134.
Taylor, P. J., Kearney, T. C., Kerbis Peterhans, J. C., Baxter, R. M., & Willows‐Munro, S. (2013). Cryptic diversity in forest shrews of the genus Myosorex from Southern Africa, with the description of a new species and comments on Myosorex tenuis. Zoological Journal of the Linnean Society, 169(4), 881–902. https://doi.org/10.1111/zoj.12083.
Taylor, P. J., Maree, S., Cotterill, F. P. D., Missoup, A. D., Nicolas, V., & Denys, C. (2014). Molecular and morphological evidence for a Pleistocene radiation of laminate‐toothed rats (Otomys: Rodentia) across a volcanic archipelago in equatorial Africa. Biological Journal of the Linnean Society, 113, 320–344.
Taylor, P. J., Maree, S., Sandwyk, J., Baxter, R., & Rambau, R. V. (2009). When is a species not a species? Uncoupled phenotypic, karyotypic and genotypic divergence in two species of south African laminate‐toothed rats (Murinae: Otomyini). Journal of Zoology (London), 277(4), 317–332.
Taylor, P. J., Markotter, W., Strydom, E., Kearney, T., Cotterill, F. P. D., Cory Toussaint, D., Weier, S. M., Keith, M., Neef, G., Richards, L., Howard, A., Mamba, M., Magagula, S., & Monadjem, A. (2022). Integrative taxonomic analysis of new collections from the central Angolan highlands resolves the taxonomy of African pipistrelloid bats on a continental scale. Zoological Journal of the Linnean Society, 196, 1570–1590. https://doi.org/10.1093/zoolinnean/zlac071.
Taylor, P. J., Stoffberg, S., Monadjem, A., Schoeman, M. C., Bayliss, J., & Cotterill, F. P. D. (2012). Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio‐Pleistocene divergence of dwarfs and giants across an Afromontane archipelago. PLoS One, 7(9), e41744. https://doi.org/10.1371/journal.pone.0041744.
Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien, S. J., & Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–584.
Tolley, K. A., Tilbury, C. R., Measey, G. J., Menegon, M., Branch, W. R., & Matthee, C. A. (2011). Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. Journal of Biogeography, 38, 1748–1760.
Uvizl, M., Kotykova Varadinova, Z., & Benda, P. (2024). Phylogenetic relationships among horseshoe bats within the Rhinolophus ferrumequinum group (Mammalia, Chiroptera). Zoologica Scripta, 00, 1–18. https://doi.org/10.1111/zsc.12650.
Van Wyk, A. E., & Smith, G. F. (2001). Regions of floristic endemism in southern Africa: a review with emphasis on succulents. Umdaus Press.
Vaz da Silva, B. G. D. (2015). Evolutionary history of the birds of the Angolan highlands—The missing piece to understand the biogeography of the Afromontane forests. MSc thesis, University of Porto, Portugal.
Voelker, G. (1999). Dispersal, vicariance and clocks: Historical biogeography and speciation in a cosmopolitan passerine genus (Anthus: Motacillidae). Evolution, 53, 1536–1552.
Voelker, G., Huntley, J. W., Bryja, J., Denys, C., Šumbera, R., Demos, T. C., Lavrenchenko, L., Nicolas, V., Gnoske, T. P., & Kerbis Peterhans, J. C. (2021). Molecular systematics and biogeographic history of the African climbing‐mouse complex (Dendromus). Molecular Phylogenetics and Evolution, 161, 107166. https://doi.org/10.1016/j.ympev.2021.107166.
Voelker, G., Outlaw, R. K., & Bowie, R. C. K. (2010). Pliocene forest dynamics as a primary driver of African bird speciation. Global Ecology and Biogeography, 19, 111–121.
Weimarck, H. (1941). Phytogeographical groups, centres and intervals within the cape Flora—a contribution to the history of the cape element seen against climatic changes. C.W.K. Gleerup & Otto Harrassowitz, Lund & Leipzig.
Willows‐Munro, S., & Matthee, C. A. (2011). Linking lineage diversification to climate and habitat heterogeneity: Phylogeography of the southern African shrew Myosorex varius. Journal of Biogeography, 38, 1976–1991.
Woloszyn, B. W. (1987). Pliocene and Pleistocene bats of Poland. Palaeontologica, 32, 207–325.
معلومات مُعتمدة: 128386 National Research Foundation and Department of Science and Innovation of South Africa; Afromontane Research Unit, University of the Free State; National Research Foundation
فهرسة مساهمة: Keywords: Afromontane; Chiroptera; baculum; biodiversity evolution; craniometric; cytochrome‐b; echolocation frequency; geographical range; phenotype
المشرفين على المادة: 0 (DNA, Mitochondrial)
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1111/gcb.17344
PMID: 38837566
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.17344