دورية أكاديمية

Monodentate Phosphinoamine Nickel Complex Supported on a Metal-Organic Framework for High-Performance Ethylene Dimerization.

التفاصيل البيبلوغرافية
العنوان: Monodentate Phosphinoamine Nickel Complex Supported on a Metal-Organic Framework for High-Performance Ethylene Dimerization.
المؤلفون: Chen W; Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar.; Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, USA., Elumalai P; Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar., Mamlouk H; Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar., Rentería-Gómez Á; Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, USA., Veeranna Y; Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar., Shetty S; Shell India Markets Pvt Ltd., Bengaluru, Karnataka, 562149, India., Kumar D; Qatar Shell Research and Technology Center, Qatar Science and Technology Park, Tech 1 Building, Doha, Qatar., Al-Rawashdeh M; Department of Chemical Engineering, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar., Gupta SS; Shell India Markets Pvt Ltd., Bengaluru, Karnataka, 562149, India., Gutierrez O; Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, USA., Zhou HC; Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, USA., Madrahimov ST; Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar.
المصدر: Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2024 Jun 04, pp. e2309540. Date of Electronic Publication: 2024 Jun 04.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: WILEY-VCH Country of Publication: Germany NLM ID: 101664569 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2198-3844 (Electronic) Linking ISSN: 21983844 NLM ISO Abbreviation: Adv Sci (Weinh) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : WILEY-VCH, [2014]-
مستخلص: Ethylene dimerization is an efficient industrial chemical process to produce 1-butene, with demanding selectivity and activity requirements on new catalytic systems. Herein, a series of monodentate phosphinoamine-nickel complexes immobilized on UiO-66 are described for ethylene dimerization. These catalysts display extensive molecular tunability of the ligand similar to organometallic catalysis, while maintaining the high stability attributed to the metal-organic framework (MOF) scaffold. The highly flexible postsynthetic modification method enables this study to prepare MOFs functionalized with five different substituted phosphines and 3 N-containing ligands and identify the optimal catalyst UiO-66-L5-NiCl 2 with isopropyl substituted nickel mono-phosphinoamine complex. This catalyst shows a remarkable activity and selectivity with a TOF of 29 000 (mol ethyl /mol Ni /h) and 99% selectivity for 1-butene under ethylene pressure of 15 bar. The catalyst is also applicable for continuous production in the packed column micro-reactor with a TON of 72 000 (mol ethyl /mol Ni ). The mechanistic insight for the ethylene oligomerization has been examined by density functional theory (DFT) calculations. The calculated energy profiles for homogeneous complexes and truncated MOF models reveal varying rate-determining step as β-hydrogen elimination and migratory insertion, respectively. The activation barrier of UiO-66-L5-NiCl 2 is lower than other systems, possibly due to the restriction effect caused by clusters and ligands. A comprehensive analysis of the structural parameters of catalysts shows that the cone angle as steric descriptor and butene desorption energy as thermodynamic descriptor can be applied to estimate the reactivity turnover frequency (TOF) with the optimum for UiO-66-L5-NiCl 2 . This work represents the systematic optimization of ligand effect through combination of experimental and theoretical data and presents a proof-of-concept for ethylene dimerization catalyst through simple heterogenization of organometallic catalyst on MOF.
(© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.)
References: a) M. Bender, ChemBioEng Rev. 2014, 1, 136;.
b) A. Gollwitzer, T. Dietel, W. P. Kretschmer, R. Kempe, Nat. Commun. 2017, 8, 1226.
a) O. L. Sydora, Organometallics 2019, 38, 997;.
b) K. P. Bryliakov, A. A. Antonov, J. Organomet. Chem. 2018, 867, 55.
S. M. Cohen, Chem. Rev. 2012, 112, 970.
a) C. Chen, M. R. Alalouni, X. Dong, Z. Cao, Q. Cheng, L. Zheng, L. Meng, C. Guan, L. Liu, E. Abou‐Hamad, J. Wang, Z. Shi, K. W. Huang, L. Cavallo, Y. Han, J. Am. Chem. Soc. 2021, 143, 7144;.
b) Y. Hu, Y. Zhang, Y. Han, D. Sheng, D. Shan, X. Liu, A. Cheng, ACS Appl. Nano Mater. 2019, 2, 136;.
c) E. D. Metzger, R. J. Comito, Z. Wu, G. Zhang, R. C. Dubey, W. Xu, J. T. Miller, M. Dincă, ACS Sustainable Chem. Eng. 2019, 7, 6654;.
d) S. T. Madrahimov, J. R. Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J. T. Miller, O. K. Farha, J. T. Hupp, S. T. Nguyen, ACS Catal. 2015, 5, 6713;.
e) E. D. Metzger, C. K. Brozek, R. J. Comito, M. Dincă, ACS Cent. Sci. 2016, 2, 148;.
f) M. Zhao, J. Chen, B. Chen, X. Zhang, Z. Shi, Z. Liu, Q. Ma, Y. Peng, C. Tan, X.‐J. Wu, H. Zhang, J. Am. Chem. Soc. 2020, 142, 8953;.
g) J. Liu, J. Ye, Z. Li, K.‐i. Otake, Y. Liao, A. W. Peters, H. Noh, D. G. Truhlar, L. Gagliardi, C. J. Cramer, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2018, 140, 11174.
a) M. Liu, S. Yang, X. Yang, C.‐X. Cui, G. Liu, X. Li, J. He, G. Z. Chen, Q. Xu, G. Zeng, Nat. Commun. 2023, 14, 3800;.
b) S. Wongwilawan, T. S. Nguyen, T. P. N. Nguyen, A. Alhaji, W. Lim, Y. Hong, J. S. Park, M. Atilhan, B. J. Kim, M. Eddaoudi, C. T. Yavuz, Nat. Commun. 2023, 14, 2096.
a) Z. H. Syed, F. Sha, X. Zhang, D. M. Kaphan, M. Delferro, O. K. Farha, ACS Catal. 2020, 10, 11556;.
b) Y.‐S. Wei, M. Zhang, R. Zou, Q. Xu, Chem. Rev. 2020, 120, 12089;.
c) J. Liu, Z. Li, X. Zhang, K.‐i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau, D. J. Mandia, J. W. Elam, O. K. Farha, J. T. Hupp, ACS Catal. 2019, 9, 3198.
a) A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 2020, 120, 8468;.
b) R. Qin, K. Liu, Q. Wu, N. Zheng, Chem. Rev. 2020, 120, 11810.
a) J. Guo, Y. Qin, Y. Zhu, X. Zhang, C. Long, M. Zhao, Z. Tang, Chem. Soc. Rev. 2021, 50, 5366;.
b) S. Yuan, J.‐S. Qin, J. Su, B. Li, J. Li, W. Chen, H. F. Drake, P. Zhang, D. Yuan, J. Zuo, H.‐C. Zhou, Angew. Chem., Int. Ed. 2018, 57, 12578;.
c) S. Yuan, P. Zhang, L. Zhang, A. T. Garcia‐Esparza, D. Sokaras, J.‐S. Qin, L. Feng, G. S. Day, W. Chen, H. F. Drake, P. Elumalai, S. T. Madrahimov, D. Sun, H.‐C. Zhou, J. Am. Chem. Soc. 2018, 140, 10814.
a) O. Schmitz‐Du Mont, B. Ross, H. Klieber, Angew. Chem., Int. Ed. Engl. 1967, 6, 875;.
b) C. Fliedel, A. Ghisolfi, P. Braunstein, Chem. Rev. 2016, 116, 9237.
a) A. M. Messinis, A. S. Batsanov, W. R. H. Wright, J. A. K. Howard, M. J. Hanton, P. W. Dyer, ACS Catal. 2018, 8, 11249;.
b) I. E. Nifant'ev, A. A. Vinogradov, A. A. Vinogradov, V. A. Roznyatovsky, Y. K. Grishin, A. V. Ivanyuk, I. V. Sedov, A. V. Churakov, P. V. Ivchenko, Organometallics 2018, 37, 2660;.
c) K. Kubo, T. Yuasa, A. Yokoichi, T. Matsugi, Y. Morikawa, S. Kume, T. Mizuta, Organometallics 2020, 39, 3010;.
d) T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Y. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi, S. N. Konchenko, Cryst. Growth Des. 2020, 20, 5796.
a) P. Boulens, M. Lutz, E. Jeanneau, H. Olivier‐Bourbigou, J. N. H. Reek, P.‐A. R. Breuil, Eur. J. Inorg. Chem. 2014, 2014, 3754;.
b) M. Lejeune, D. Sémeril, C. Jeunesse, D. Matt, F. Peruch, P. J. Lutz, L. Ricard, Chemistry–A European Journal 2004, 10, 5354;.
c) X. Meng, L. Zhang, Y. Chen, T. Jiang, React. Kinet., Mech. Catal. 2016, 119, 481.
a) D.‐H. Kwon, S. M. Maley, J. C. Stanley, O. L. Sydora, S. M. Bischof, D. H. Ess, ACS Catal. 2020, 10, 9674;.
b) A. M. Messinis, W. R. H. Wright, A. S. Batsanov, J. A. K. Howard, M. J. Hanton, P. W. Dyer, ACS Catal. 2018, 8, 11235;.
c) C. Rong, W. Li, C. Tan, Appl. Organomet. Chem. 2019, 33, e4631.
a) Y.‐M. Li, J. Yuan, H. Ren, C.‐Y. Ji, Y. Tao, Y. Wu, L.‐Y. Chou, Y.‐B. Zhang, L. Cheng, J. Am. Chem. Soc. 2021;.
b) T. Sawano, Z. Lin, D. Boures, B. An, C. Wang, W. Lin, J. Am. Chem. Soc. 2016, 138, 9783.
P. Elumalai, H. Mamlouk, W. Yiming, L. Feng, S. Yuan, H.‐C. Zhou, S. T. Madrahimov, ACS Appl. Mater. Interfaces 2018, 10, 41431.
W. Chen, P. Cai, P. Elumalai, P. Zhang, L. Feng, M. m. Al‐Rawashdeh, S. T. Madrahimov, H.‐C. Zhou, ACS Appl. Mater. Interfaces 2021.
a) H. Mamlouk, P. Elumalai, M. P. Kumar, F. H. Aidoudi, A. A. Bengali, S. T. Madrahimov, ACS Appl. Mater. Interfaces 2020, 12, 3171;.
b) W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas, C. A. Mirkin, J. Am. Chem. Soc. 2014, 136, 7261.
P. Elumalai, N. Elrefaei, W. Chen, M. m. Al‐Rawashdeh, S. T. Madrahimov, Catalysts 2020, 10, 1159.
a) Y. Song, D. Thirion, S. Subramanian, M. S. Lah, C. T. Yavuz, Microporous Mesoporous Mater. 2017, 243, 85;.
b) R. Oozeerally, D. L. Burnett, T. W. Chamberlain, R. J. Kashtiban, S. Huband, R. I. Walton, V. Degirmenci, ChemCatChem 2021, 13, 2517.
P. V. Nagarkar, S. K. Kulkarni, E. Umbach, Appl. Surf. Sci. 1987, 29, 194.
J. Matienzo, L. I. Yin, S. O. Grim, W. E. Swartz, Inorg. Chem. 1973, 12, 2762.
a) S. Forget, H. Olivier‐Bourbigou, D. Delcroix, ChemCatChem 2017, 9, 2408;.
b) A. Ghisolfi, C. Fliedel, V. Rosa, K. Y. Monakhov, P. Braunstein, Organometallics 2014, 33, 2523.
a) J. Canivet, S. Aguado, Y. Schuurman, D. Farrusseng, J. Am. Chem. Soc. 2013, 135, 4195;.
b) C. Chen, L. Meng, M. R. Alalouni, X. Dong, Z.‐P. Wu, S. Zuo, H. Zhang, Small 2023, 19, 2301235.
A. Finiels, F. Fajula, V. Hulea, Catal. Sci. Technol. 2014, 4, 2412.
N. C. Thacker, Z. Lin, T. Zhang, J. C. Gilhula, C. W. Abney, W. Lin, J. Am. Chem. Soc. 2016, 138, 3501.
P. Thongkam, S. Jindabot, S. Prabpai, P. Kongsaeree, T. Wititsuwannakul, P. Surawatanawong, P. Sangtrirutnugul, RSC Adv. 2015, 5, 55847.
a) M. M. Talukder, J. M. O. Cue, J. T. Miller, P. L. Gamage, A. Aslam, G. T. McCandless, M. C. Biewer, M. C. Stefan, ACS Omega 2020, 5, 24018;.
b) J. M. Blacquiere, ACS Catal. 2021, 11, 5416.
P.‐A. R. Breuil, L. Magna, H. Olivier‐Bourbigou, Catal. Lett. 2015, 145, 173.
J. L. Mancuso, C. A. Gaggioli, L. Gagliardi, C. H. Hendon, J. Phys. Chem. C 2021, 125, 22036.
H. Olivier‐Bourbigou, P. A. R. Breuil, L. Magna, T. Michel, M. F. Espada Pastor, D. Delcroix, Chem. Rev. 2020, 120, 7919.
R. Y. Brogaard, M. Kømurcu, M. M. Dyballa, A. Botan, V. Van Speybroeck, U. Olsbye, K. De Wispelaere, ACS Catal. 2019, 9, 5645.
a) J. Ye, L. Gagliardi, C. J. Cramer, D. G. Truhlar, J. Catal. 2018, 360, 160;.
b) B. Yeh, S. P. Vicchio, S. Chheda, J. Zheng, J. Schmid, L. Löbbert, R. Bermejo‐Deval, O. Y. Gutiérrez, J. A. Lercher, C. C. Lu, M. Neurock, R. B. Getman, L. Gagliardi, A. Bhan, J. Am. Chem. Soc. 2021, 143, 20274.
F. M. Bickelhaupt, K. N. Houk, Angew. Chem., Int. Ed. 2017, 56, 10070.
F. Speiser, P. Braunstein, L. Saussine, Acc. Chem. Res. 2005, 38, 784.
C. A. Tolman, Chem. Rev. 1977, 77, 313.
H. Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 841.
I. Albers, E. Álvarez, J. Cámpora, C. M. Maya, P. Palma, L. J. Sánchez, E. Passaglia, J. Organomet. Chem. 2004, 689, 833.
C. Vogt, B. M. Weckhuysen, Nat. Rev. Chem. 2022, 6, 89.
معلومات مُعتمدة: NPRP13S-0213-200353 NPRP; Qatar National Research Fund; Qatar Shell Research and Technology Center; Camille and Henry Dreyfus Foundation; A-2102-20220331 Welch Foundation; 22301314 National Natural Science Foundation of China; R35GM137797 Foundation for the National Institutes of Health
فهرسة مساهمة: Keywords: catalysis; ethylene dimerization; mechanistic studies; metal–organic frameworks
تواريخ الأحداث: Date Created: 20240605 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1002/advs.202309540
PMID: 38837615
قاعدة البيانات: MEDLINE
الوصف
تدمد:2198-3844
DOI:10.1002/advs.202309540