دورية أكاديمية

Pacific salmon in the Canadian Arctic highlight a range-expansion pathway for sub-Arctic fishes.

التفاصيل البيبلوغرافية
العنوان: Pacific salmon in the Canadian Arctic highlight a range-expansion pathway for sub-Arctic fishes.
المؤلفون: Dunmall KM; Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada., Langan JA; College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.; Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, Michigan, USA., Cunningham CJ; College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA., Reist JD; Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada., Melling H; Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada.
مؤلفون مشاركون: Aklavik Hunters and Trappers Committee; Aklavik, Northwest Territories, Canada., Olokhaktomiut Hunters and Trappers Committee; Ulukhaktok, Northwest Territories, Canada., Paulatuk Hunters and Trappers Committee; Paulatuk, Northwest Territories, Canada., Sachs Harbour Hunters and Trappers Committee; Sachs Harbour, Northwest Territories, Canada., Tuktoyaktuk Hunters and Trappers Committee; Tuktoyaktuk, Northwest Territories, Canada., Kugluktuk Hunters and Trappers Organization; Kugluktuk, Nunavut, Canada.
المصدر: Global change biology [Glob Chang Biol] 2024 Jun; Vol. 30 (6), pp. e17353.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Climate Change*, Animals ; Arctic Regions ; Canada ; Salmon/physiology ; Temperature ; Animal Distribution ; Ecosystem ; Seasons
مستخلص: Rapid climate change is altering Arctic ecosystems at unprecedented rates. These changes in the physical environment may open new corridors for species range expansions, with substantial implications for subsistence-dependent communities and sensitive ecosystems. Over the past 20 years, rising incidental harvest of Pacific salmon by subsistence fishers has been monitored across a widening range spanning multiple land claim jurisdictions in Arctic Canada. In this study, we connect Indigenous and scientific knowledges to explore potential oceanographic mechanisms facilitating this ongoing northward expansion of Pacific salmon into the western Canadian Arctic. A regression analysis was used to reveal and characterize a two-part mechanism related to thermal and sea-ice conditions in the Chukchi and Beaufort seas that explains nearly all of the variation in the relative abundance of salmon observed within this region. The results indicate that warmer late-spring temperatures in a Chukchi Sea watch-zone and persistent, suitable summer thermal conditions in a Beaufort Sea watch-zone together create a range-expansion corridor and are associated with higher salmon occurrences in subsistence harvests. Furthermore, there is a body of knowledge to suggest that these conditions, and consequently the presence and abundance of Pacific salmon, will become more persistent in the coming decades. Our collaborative approach positions us to document, explore, and explain mechanisms driving changes in fish biodiversity that have the potential to, or are already affecting, Indigenous rights-holders in a rapidly warming Arctic.
(Global Change Biology© 2024 His Majesty the King in Right of Canada and The Author(s). Global Change Biology published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Fisheries and Oceans Canada.)
References: Abdul‐Aziz, O. I., Mantua, N. J., & Myers, K. W. (2011). Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Canadian Journal of Fisheries and Aquatic Sciences, 68, 1660–1680. https://doi.org/10.1139/f2011‐079.
Anderson, J. H., & Quinn, T. P. (2007). Movements of adult coho salmon (Oncorhynchus kisutch) during colonization of newly accessible habitat. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1143–1154.
Ballinger, T. J., & Overland, J. E. (2022). The Alaskan Arctic regime shift since 2017: A harbinger of years to come? Polar Science, 32, 100841. https://doi.org/10.1016/j.polar.2022.100841.
Barry, T., Price, C., Olsen, M., Christensen, T., & Frederiksen, M. (Eds.). (2017). State of the Arctic marine biodiversity report. Conservation of Arctic Flora and Fauna (CAFF). http://hdl.handle.net/11374/1945.
Beamish, R. J. (Ed.). (2018). The ocean ecology of Pacific salmon and trout. American Fisheries Society.
Beaugrand, G., Conversi, A., Atkinson, A., Cloern, J., Chiba, S., Fonda‐Umani, S., Kirby, R. R., Greene, C. H., Goberville, E., Otto, S. A., Reid, P. C., Stemmann, L., & Edwards, M. (2019). Prediction of unprecedented biological shifts in the global ocean. Nature Climate Change, 9, 237–243. https://doi.org/10.1038/s41558‐019‐0420‐1.
Bell, D. A., Kovach, R. P., Vulstek, S. C., Joyce, J. E., & Tallmon, D. A. (2017). Climate‐induced trends in predator–prey synchrony differ across life‐history stages of an anadromous salmonid. Canadian Journal of Fisheries and Aquatic Sciences, 74(9), 1431–1438. https://doi.org/10.1139/cjfas‐2016‐0309.
Bilous, M., & Dunmall, K. M. (2020). Atlantic salmon in the Canadian Arctic: Potential dispersal, establishment, and interaction with Arctic char. Reviews in Fish Biology and Fisheries, 30, 463–483. https://doi.org/10.1007/s11160‐020‐09610‐2.
Chila, Z., Dunmall, K. M., Proverbs, T. A., Lantz, T. C., Hunters, A., Committee, T., Hunters, I., Committee, T., Hunters, S. H., Committee, T., Hunters, O., Committee, T., Hunters, P., & Committee, T. (2022). Inuvialuit knowledge of Pacific Salmon range expansion in the Western Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences, 79, 1042–1055. https://doi.org/10.1139/cjfas‐2021‐0172.
Cooke, S. J., Nguyen, V. M., Chapman, J. M., Reid, A. J., Landsman, S. J., Young, N., Hinch, S. G., Schott, S., Mandrak, N. E., & Semeniuk, C. A. D. (2021). Knowledge co‐production: A pathway to effective fisheries management, conservation, and governance. Fisheries, 46(2), 89–97. https://doi.org/10.1002/fsh.10512.
Corlett, W. B., & Pickart, R. S. (2017). The Chukchi slope current. Progress in Oceanography, 153, 50–65.
Correa, C., & Gross, M. R. (2008). Chinook salmon invade southern South America. Biological Invasions, 10, 615–639. https://doi.org/10.1007/s10530‐007‐9157‐2.
Crawford, A., Stroeve, J., Smith, A., & Jahn, A. (2021). Arctic open‐water periods are projected to lengthen dramatically by 2100. Communications Earth & Environment, 2, 109. https://doi.org/10.1038/s43247‐021‐00183‐x.
Danielson, S. L., Ahkinga, O., Ashjian, C., Basyuk, E., Cooper, L. W., Eisner, L., Farley, E., Iken, K. B., Grebmeier, J. M., Juranek, L., Khen, G., Jayne, S. R., Kikuchi, T., Ladd, C., Lu, K., McCabe, R. M., Moore, G. W. K., Nishino, S., Ozenna, F., … Weingartner, T. J. (2020). Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves. Deep‐Sea Research Part II, 177, 104781. https://doi.org/10.1016/j.dsr2.2020.104781.
Denton, K. P., Rich, H. B., Jr., Moore, J. W., & Quinn, T. P. (2010). The utilization of a Pacific salmon Oncorhynchus nerka subsidy by three populations of charr Salvelinus spp. Journal of Fish Biology, 77, 1006–1023. https://doi.org/10.1111/j.1095‐8649.2010.02746.x.
Di Prinzio, C. Y., & Pascual, M. A. (2009). The establishment of exotic Chinook salmon (Oncorhynchus tshawytscha) in Pacific rivers of Chubut, Patagonia, Argentina. Annales de Limnologie—International Journal of Limnology, 44, 25–32.
Dunmall, K. M., McNicholl, D. G., Farley, E., & Reist, J. D. (2021). Reported occurrences of Pacific Salmon in the Canadian Arctic continue to increase whereas reports of Atlantic Salmon sightings remain low. North Pacific Anadromous Fish Commission Tech Report, 17, 88–91. https://doi.org/10.23849/npafctr17/88.91.
Dunmall, K. M., McNicholl, D. G., & Reist, J. D. (2018). Community‐based monitoring demonstrates increasing occurrences and abundances of Pacific salmon in the Canadian Arctic from 2000 to 2017. North Pacific Anadromous Fish Commission Tech Report, 11, 87–90. https://doi.org/10.23849/npafctr11/87.90.
Dunmall, K. M., McNicholl, D. G., Zimmerman, C. E., Gilk‐Baumer, S. E., Burril, S., & von Biela, V. R. (2022). First juvenile chum salmon confirms successful reproduction for Pacific salmon in the North American Arctic. Canadian Journal of Fisheries and Aquatic Sciences, 79(5), 703–707. https://doi.org/10.1139/cjfas‐2022‐0006.
Dunmall, K. M., Mochnacz, N. J., Zimmerman, C. E., Lean, C., & Reist, J. D. (2016). Using thermal limits to assess establishment of fish dispersing to high‐latitude and high‐elevation watersheds. Canadian Journal of Fisheries and Aquatic Sciences, 73, 1750–1758. https://doi.org/10.1139/cjfas‐2016‐0051.
Dunmall, K. M., & Reist, J. (2018). Developing a citizen science framework for the Arctic using the “Arctic Salmon” initiative. In F. J. Mueter, M. R. Baker, S. C. Dressel, & A. B. Hollowed (Eds.), Impacts of a changing environment on the dynamics of high‐latitude fish and fisheries. Proceedings for the 31st Lowell Wakefield fisheries symposium. Alaska Sea Grant, University of Alaska. https://doi.org/10.4027/icedhlff.2018.02.
Dunmall, K. M., Reist, J. D., Carmack, E. C., Babluk, J. A., Heide‐Jørgensen, M. P., & Docker, M. F. (2013). Pacific salmon in the Arctic: Harbingers of change. In F. J. Mueter, D. M. S. Dickson, H. P. Huntington, J. R. Irvine, E. A. Logerwell, S. A. MacLean, L. T. Quakenbush, & C. Rosa (Eds.), Responses of Arctic marine ecosystems to climate change (pp. 141–163). Alaska Sea Grant, University of Alaska Fairbanks. https://doi.org/10.4027/ramecc.2013.07.
Emelin, P. O., Maznikova, O. A., Benzik, A. N., Sheibak, A. Y., Trofimova, A. O., & Orlov, A. M. (2022). Invader's portrait: Biological characteristics of walleye pollock Gadus chalcogrammus in the western Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 206, 105211. https://doi.org/10.1016/j.dsr2.2022.105211.
Farley, E. V., Murphy, J. M., Cieciel, K., Yasumiishi, E. M., Dunmall, K., Sformo, T., & Rand, P. (2020). Response of Pink salmon to climate warming in the northern Bering Sea. Deep‐Sea Research Part II: Topical Studies in Oceanography, 177, 104830. https://doi.org/10.1016/j.dsr2.2020.104830.
Fogarty, H. E., Burrows, M. T., Pecl, G. T., Robinson, L. M., & Poloczanska, E. S. (2017). Are fish outside their usual ranges early indicators of climate‐driven range shifts? Global Change Biology, 23(5), 2047–2057. https://doi.org/10.1111/gcb.13635.
Gong, D., & Pickart, R. S. (2015). Summertime circulation in the eastern Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 118A, 18–31. https://doi.org/10.1016/j.dsr2.2015.02.006.
Grebmeier, J. M. (2012). Shifting patterns of life in the Pacific Arctic and sub‐Arctic seas. Annual Review of Marine Science, 4(1), 63–78.
Grebmeier, J. M., Overland, J. E., Moore, S. E., Farley, E. V., Carmack, E. C., Cooper, L. W., Frey, K. E., Helle, J. H., McLaughlin, F. A., & McNutt, S. L. (2006). A major ecosystem shift in the northern Bering Sea. Science, 311, 1461–1463. https://doi.org/10.1126/science.1121365.
Harris, L., Moore, J.‐S., Dunmall, K., Evans, M., Falardeau, M., Gallagher, C., Gilbert, M., Kenny, T., McNicholl, D., Norman, M., Lyall, G., & Kringayark, L. (2022). Arctic char in a rapidly changing North. In Polar knowledge: Aqhaliat report (Vol. 4, pp. 34–57). Polar Knowledge Canada. https://doi.org/10.35298/pkc.2021.02.eng.
Heide‐Jørgensen, M. P., Laidre, K. L., Quakenbush, L. T., & Citta, J. J. (2012). The northwest passage opens for bowhead whales. Biology Letters, 8, 270–273. https://doi.org/10.1098/rsbl.2011.0731.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., & Zhang, H.‐M. (2021). Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. Journal of Climate, 34, 2923–2939. https://doi.org/10.1175/JCLI‐D‐20‐0166.1.
Huang, Y., Bai, X., & Leng, H. (2022). Synoptic‐scale variability in the Beaufort high and spring ice opening in the Beaufort Sea. Frontiers in Marine Science, 9, 1–13. https://doi.org/10.3389/fmars.2022.929209.
Huntington, H. P., Danielson, S. L., Wiese, F. K., Baker, M., Boveng, P., Citta, J. J., de Robertis, A., Dickson, D. M. S., Farley, E., George, J. C., Iken, K., Kimmel, D. G., Kuletz, K., Ladd, C., Levine, R., Quakenbush, L., Stabeno, P., Stafford, K. M., Stockwell, D., & Wilson, C. (2020). Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway. Nature Climate Change, 10, 342–348. https://doi.org/10.1038/s41558‐020‐0695‐2.
Irvine, J. R., Macdonald, R. W., Brown, R. J., Godbout, L., Reist, J. D., & Carmack, E. C. (2009). Salmon in the Arctic and how they avoid lethal low temperatures. North Pacific Anadromous Fish Commission Bulletin, 5, 39–50.
Kotwicki, S., Buckley, T. W., Honkalehto, T., & Walters, G. (2005). Variation in the distribution of walleye pollock (Theragra chalcogramma) with temperature and implications for seasonal migration. Fishery Bulletin, 103, 574–587.
Langan, J. A., Cunningham, C. J., Watson, J. T., & McKinnell, S. (2024). Opening the black box: New insights into the role of temperature in the marine distributions of Pacific salmon. Fish and Fisheries. https://doi.org/10.1111/faf.12825.
Lin, P., Pickart, R. S., Våge, K., & Li, J. (2021). Fate of warm Pacific water in the Arctic Basin. Geophysical Research Letters, 48, e2021GL094693. https://doi.org/10.1029/2021GL094693.
Logerwell, E., Busby, M., Carothers, C., Cotton, S., Duffy‐Anderson, J., Farley, E., Goddard, P., Heintz, R., Holladay, B., Horne, J., Johnson, S., Lauth, B., Moulton, L., Neff, D., Norcross, B., Parker‐Stetter, S., Seigle, J., & Sformo, T. (2015). Fish communities across a spectrum of habitats in the western Beaufort Sea and Chukchi Sea. Progress in Oceanography, 136, 115–132. https://doi.org/10.1016/j.pocean.2015.05.013.
McNicholl, D. G., Harris, L. N., Loewen, T., May, P., Tran, L., Akeeagok, R., Methuen, K., Lewis, C., Jeppesen, R., Illasiak, S., Green, B., Koovaluk, J., Annahatak, Z., Kapakatoak, J., Kaosoni, N., Hainnu, B., Maksagak, B., Reist, J. D., & Dunmall, K. M. (2021). Expanding, vagrant or rare: Updates to the known distributions of fish species found in the Canadian Arctic. Animal Migrations Special Issue: Arctic Migrations, 8, 74–83. https://doi.org/10.1515/ami‐2020‐0113.
Milner, A. M., Robertson, A. L., Monaghan, K. A., Veal, A. J., & Flory, E. A. (2008). Colonization and development of an Alaskan stream community over 28 years. Frontiers in Ecology and the Environment, 6(8), 413–419. https://doi.org/10.1890/060149.
Moss, J. H., Murphy, J. M., Farley, E. V., Jr., Eisner, L. B., & Andrews, A. G. (2009). Juvenile pink and chum salmon distribution, diet, and growth in the northern Bering and Chukchi seas. North Pacific Anadromous Fish Commission Bulletin, 5, 191–196.
Mountain, D. G. (1974). Preliminary analysis of Beaufort shelf circulation in summer. In J. C. Reed, J. E. Sater, & W. W. Gunn (Eds.), The coast and shelf of the Beaufort Sea: Proceedings of a symposium on Beaufort Sea coast and shelf research (pp. 27–48). Arctic Institute of North America.
Mueter, F. J., Iken, K., Cooper, L. W., Grebmeier, J. M., Kuletz, K. J., Hopcroft, R. R., Danielson, S. L., Collins, R. E., & Cushing, D. A. (2021). Changes in diversity and species composition across multiple assemblages in the eastern Chukchi Sea during two contrasting years are consistent with borealization. Oceanography, 34(2), 38–51. https://doi.org/10.5670/oceanog.2021.213.
Mueter, F. J., Planque, B., Hunt, G. L., Alabia, I. D., Hirawake, T., Eisner, L., Dalpadado, P., Chierici, M., Drinkwater, K. F., Harada, N., Arneberg, P., & Saitoh, S.‐I. (2021). Possible future scenarios in the gateways to the Arctic for subarctic and Arctic marine systems: II. Prey resources, food webs, fish, and fisheries. ICES Journal of Marine Science, 78, 3017–3045. https://doi.org/10.1093/icesjms/fsab122.
Nielsen, J. L., Ruggerone, G. T., & Zimmerman, C. E. (2013). Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic? Environmental Biology of Fishes, 96, 1187–1226. https://doi.org/10.1007/s10641‐012‐0082‐6.
Nikolopoulos, A., Pickart, R. S., Fratantoni, P. S., Shimada, K., Torres, D. J., & Jones, E. P. (2009). The western Arctic boundary current at 152 W: Structure, variability, and transport. Deep Sea Research Part II: Topical Studies in Oceanography, 56(17), 1164–1181.
Okkonen, S. R., Ashjian, C. J., Campbell, R. G., Maslowski, W., Clement‐Kinney, J. L., & Potter, R. (2009). Intrusion of warm Bering/Chukchi waters onto the shelf in the western Beaufort Sea. Journal of Geophysical Research: Oceans, 114(C1), C00A11. https://doi.org/10.1029/2008JC004870.
Overland, J. E., Wang, J., Pickart, R. S., & Wang, M. (2014). Recent and future changes in the meteorology of the Pacific Arctic. In J. M. Grebmeier, & W. Maslowski (Eds.), The Pacific Arctic region: Ecosystem status and trends in a rapidly changing environment (pp. 17–30). Springer.
Paquette, R. A., & Bourke, R. H. (1974). Observations on the coastal current of Arctic Alaska. Journal of Marine Research, 32(2), 195–207.
Pess, G. R., Hilborn, R., Kloehn, K., & Quinn, T. P. (2012). The influence of population dynamics and environmental conditions on pink salmon (Oncorhynchus gorbuscha) recolonization after barrier removal in the Fraser River, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 69, 970–982. https://doi.org/10.1139/F2012‐030.
Pickart, R. S., Nobre, C., Lin, P., Arrigo, K. R., Ashjian, C. J., Berchok, C., Cooper, L. W., Grebmeier, J. M., Hartwell, I., He, J., Itoh, M., Kikuchi, T., Nishino, S., & Vagle, S. (2019). Seasonal to mesoscale variability of water masses and atmospheric conditions in Barrow Canyon, Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 162, 32–49. https://doi.org/10.1016/j.dsr2.2019.02.003.
Pinsky, M. L., Selden, R. L., & Kitchel, Z. J. (2020). Climate—Driven shifts in marine species ranges: Scaling from organisms to communities. Annual Review of Marine Science, 12, 153–179. https://doi.org/10.1146/annurev‐marine‐010419‐010916.
Polyakov, I. V., Alkire, M. B., Bluhm, B. A., Brown, K. A., Carmack, E. C., Chierici, M., Danielson, S. L., Ellingsen, I., Ershova, E. A., Gårdfeldt, K., Ingvaldsen, R. B., Pnyushkov, A. V., Slagstad, D., & Wassmann, P. (2020). Borealization of the Arctic Ocean in response to anomalous advection from sub‐Arctic seas. Frontiers in Marine Science, 7, 491. https://doi.org/10.3389/fmars.2020.00491.
Quinn, T. P., Kinnison, M. T., & Unwin, M. J. (2001). Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: Pattern, rate, and process. In A. P. Hendry & M. T. Kinnison (Eds.), Microevolution rate, pattern, process (pp. 493–513). Springer.
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/.
Radchenko, V. I., Beamish, R. J., Heard, W. R., & Temnykh, O. S. (2018). Ocean ecology of pink salmon. In R. J. Beamish (Ed.), The ocean ecology of Pacific Salmon and Trout (pp. 15–160). American Fisheries Society. https://doi.org/10.47886/9781934874455.ch1.
Rand, K. M., & Logerwell, E. A. (2010). The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s. Polar Biology, 34, 475–488. https://doi.org/10.1007/s00300‐010‐0900‐2.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3, 168. https://doi.org/10.1038/s43247‐022‐00498‐3.
Reist, J. D., & Bond, W. A. (1988). Life history characteristics of migratory coregonids of the lower Mackenzie River, Northwest Territories, Canada. Finnish Fisheries Research, 9, 133–144.
Ruggerone, G. T., & Rogers, D. E. (1984). Arctic char predation on sockeye salmon smolts at Little Togiak River, Alaska. Fishery Bulletin, 82(2), 401–410. https://spo.nmfs.noaa.gov/sites/default/files/pdf‐content/fish‐bull/ruggerone.pdf.
Salonius. (1973). Barriers to range extension of Atlantic and Pacific salmon in Arctic North America. Arctic, 26, 112–122. https://doi.org/10.14430/ARCTIC2905.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136.
Sergeant, C. J., Armstrong, J. B., & Ward, E. J. (2015). Predator‐prey migration phenologies remain synchronised in a warming catchment. Freshwater Biology, 60, 724–732. https://doi.org/10.1111/fwb.12524.
Sigler, M. F., Renner, M., Danielson, S. L., Eisner, L. B., Lauth, R. R., Kuletz, K. J., Logerwell, E. A., & Hunt, G. L., Jr. (2011). Fluxes, fins, and feathers: Relationships among the Bering, Chukchi, and Beaufort seas in a time of climate change. Oceanography, 24(3), 250–265. https://doi.org/10.5670/oceanog.2011.77.
Sparks, M. (2023). The biological consequences of cryptic local adaptation and contemporary evolution. Purdue University. https://hammer.purdue.edu/articles/thesis/THE_BIOLOGICAL_CONSEQUENCES_OF_CRYPTIC_LOCAL_ADAPTATION_AND_CONTEMPORARY_EVOLUTION/22693279.
Stabeno, P. J., Kachel, N. B., Moore, S. E., Napp, J. M., Sigler, M., Yamaguchi, A., & Zerbini, A. N. (2012). Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 65–70, 31–45. https://doi.org/10.1016/j.dsr2.2012.02.020.
Stafford, K. M., Farley, E. V., Ferguson, M., Kuletz, K. J., & Levine, R. (2022). Northward range expansion of subarctic upper trophic level animals into the Pacific Arctic region. Oceanography, 35(3–4), 158–166. https://doi.org/10.5670/oceanog.2022.101.
Steele, M., Morison, J., Ermold, W., Rigor, I., Ortmeyer, M., & Shimada, K. (2004). Circulation of summer Pacific halocline water in the Arctic Ocean. Journal of Geophysical Research: Oceans, 109, C02027. https://doi.org/10.1029/2003JC002009.
Stephenson, S. A. (2006). A review of the occurrence of Pacific salmon (Oncorhynchus spp.) in the Canadian Western Arctic. Arctic, 59(1), 37–46.
Stevenson, D. E., & Lauth, R. R. (2019). Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. Polar Biology, 42, 407–421. https://doi.org/10.1007/s00300‐018‐2431‐1.
Thoman, R. L., Bhatt, U. S., Bieniek, P. A., Brettschneider, B. R., Brubaker, M., Danielson, S. L., Labe, Z., Lader, R., Meier, W. N., Sheffield, G., & Walsh, J. E. (2020). The record low Bering sea ice extent in 2018: Context, impacts, and an assessment of the role of anthropogenic climate change. Bulletin of the American Meteorological Society, 101(1), S53–S58. https://doi.org/10.1175/BAMS‐D‐19‐0175.1.
von Appen, W. J., & Pickart, R. S. (2012). Two configurations of the western Arctic shelfbreak current in summer. Journal of Physical Oceanography, 42(3), 329–351.
von Biela, V. R., Laske, S. M., Stanek, A. E., Brown, R. J., & Dunton, K. H. (2023). Borealization of nearshore fishes on an interior Arctic shelf over multiple decades. Global Change Biology, 29, 1822–1838. https://doi.org/10.1111/gcb.16576.
Walsh, J. E., Eicken, H., Redilla, K., & Johnson, M. (2022). Sea ice breakup and freeze‐up indicators for users of the Arctic coastal environment. The Cryosphere, 16, 4617–4635. https://doi.org/10.5194/tc‐16‐4617‐2022.
Wang, Y., Liu, N., & Zhang, Z. (2021). Sea ice reduction during winter of 2017 due to oceanic heat supplied by Pacific water in the Chukchi Sea, West Arctic Ocean. Frontiers in Marine Science, 8, 650909. https://doi.org/10.3389/fmars.2021.650909.
Waples, R. S., Pess, G. R., & Beechie, T. (2008). Evolutionary history of Pacific salmon in dynamic environments. Evolutionary Applications, 1, 189–206. https://doi.org/10.1111/j.1752‐4571.2008.00023.x.
Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y., & Cavalieri, D. (2005). Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24–26), 3150–3174. https://doi.org/10.1016/j.dsr2.2005.10.015.
Wildes, S., Whittle, J., Nguyen, H., Marsh, M., Karpan, K., D'Amelio, C., Dimond, A., Cieciel, K., De Robertis, A., Levine, R., Larson, W., & Guyon, J. (2022). Walleye Pollock breach the Bering Strait: A change of the cods in the arctic. Deep Sea Research Part II: Topical Studies in Oceanography, 204, 105165. https://doi.org/10.1016/j.dsr2.2022.105165.
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC.
Woodgate, R. A. (2018). Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year‐round Bering Strait mooring data. Progress in Oceanography, 160, 124–154.
Woodgate, R. A., & Peralta‐Ferriz, C. (2021). Warming and freshening of the Pacific inflow to the Arctic from 1990–2019 implying dramatic shoaling in Pacific winter water ventilation of the Arctic water column. Geophysical Research Letters, 48(9), e2021GL092528. https://doi.org/10.1029/2021GL092528.
Zimmerman, C. E., Ramey, A. M., Turner, S. M., Mueter, F. J., Murphy, S. M., & Nielsen, J. L. (2013). Genetics, recruitment, and migration patterns of Arctic cisco (Coregonus autumnalis) in the Colville River, Alaska, and Mackenzie River, Canada. Polar Biology, 36, 1543–1555. https://doi.org/10.1007/s00300‐013‐1372‐y.
معلومات مُعتمدة: CIMP 142 Government of Northwest Territories; Inuvialuit Regional Corporation & Crown-Indigenous Relations and Northern Affairs Canada; Sahtú Renewable Resources Board; Gwich'in Renewable Resources Board; Alaska Fisheries Science Center; Fisheries and Oceans Canada; Liber Ero Foundation; Fisheries Joint Management Committee
فهرسة مساهمة: Keywords: Arctic; Beaufort Sea; Chukchi Sea; Indigenous knowledge; Pacific salmon; bridging knowledges; climate change; range expansion; sea ice; sea surface temperature
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1111/gcb.17353
PMID: 38837850
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.17353