دورية أكاديمية

Nuclear position and local acetyl-CoA production regulate chromatin state.

التفاصيل البيبلوغرافية
العنوان: Nuclear position and local acetyl-CoA production regulate chromatin state.
المؤلفون: Willnow P; German Cancer Research Center (DKFZ), Heidelberg, Germany.; Heidelberg University, Heidelberg, Germany., Teleman AA; German Cancer Research Center (DKFZ), Heidelberg, Germany. a.teleman@dkfz.de.; Heidelberg University, Heidelberg, Germany. a.teleman@dkfz.de.
المصدر: Nature [Nature] 2024 Jun; Vol. 630 (8016), pp. 466-474. Date of Electronic Publication: 2024 Jun 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Acetyl Coenzyme A*/metabolism , Cell Nucleus*/genetics , Cell Nucleus*/metabolism , Chromatin*/metabolism , Chromatin*/genetics , Drosophila melanogaster*/enzymology , Drosophila melanogaster*/genetics , Drosophila melanogaster*/growth & development , Drosophila melanogaster*/metabolism, Animals ; Acetate-CoA Ligase/metabolism ; Acetylation ; Biological Transport ; Drosophila Proteins/metabolism ; Drosophila Proteins/genetics ; Fatty Acids/chemistry ; Fatty Acids/metabolism ; Gene Expression Regulation ; Histones/chemistry ; Histones/metabolism ; Imaginal Discs/cytology ; Imaginal Discs/growth & development ; Imaginal Discs/metabolism ; Lysine/metabolism ; Oxidation-Reduction ; Wings, Animal/cytology ; Wings, Animal/growth & development ; Wings, Animal/metabolism
مستخلص: Histone acetylation regulates gene expression, cell function and cell fate 1 . Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid β-oxidation, which is also increased in the rim. Inhibition of fatty acid β-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.
(© 2024. The Author(s).)
References: Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022). (PMID: 10.1038/s41580-021-00441-y35042977)
Nitsch, S., Zorro Shahidian, L. & Schneider, R. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep. 22, e52774 (2021). (PMID: 10.15252/embr.202152774341597018406397)
Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013). (PMID: 10.1038/nrg355424105274)
Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011). (PMID: 10.1016/j.molcel.2011.05.004215963093109073)
Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009). (PMID: 10.1126/science.1164097194610032746744)
Figlia, G., Willnow, P. & Teleman, A. A. Metabolites regulate cell signaling and growth via covalent modification of proteins. Dev. Cell 54, 156–170 (2020). (PMID: 10.1016/j.devcel.2020.06.03632693055)
Almonacid, M., Terret, M. E. & Verlhac, M. H. Nuclear positioning as an integrator of cell fate. Curr. Opin. Cell Biol. 56, 122–129 (2019). (PMID: 10.1016/j.ceb.2018.12.00230594054)
Kirkland, N. J. et al. Tissue mechanics regulate mitotic nuclear dynamics during epithelial development. Curr. Biol. 30, 2419–2432.e4 (2020). (PMID: 10.1016/j.cub.2020.04.041324133057342018)
Gundersen, G. G. & Worman, H. J. Nuclear positioning. Cell 152, 1376–1389 (2013). (PMID: 10.1016/j.cell.2013.02.031234989443626264)
Del Bene, F., Wehman, A. M., Link, B. A. & Baier, H. Regulation of neurogenesis by interkinetic nuclear migration through an apical–basal notch gradient. Cell 134, 1055–1065 (2008). (PMID: 10.1016/j.cell.2008.07.017188050972628487)
Eugster, C., Panakova, D., Mahmoud, A. & Eaton, S. Lipoprotein–heparan sulfate interactions in the Hh pathway. Dev. Cell 13, 57–71 (2007). (PMID: 10.1016/j.devcel.2007.04.01917609110)
Kelly, R. D. W. et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Sci. Rep. 8, 14690 (2018). (PMID: 10.1038/s41598-018-32927-9302794826168483)
Xu, X. et al. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genet. 8, e1002478 (2012). (PMID: 10.1371/journal.pgen.1002478222758783261918)
Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011). (PMID: 10.1038/nrg290521116306)
Ermakova, Y. G. et al. SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem. Commun. 54, 2898–2901 (2018). (PMID: 10.1039/C7CC08740C)
Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018). (PMID: 10.1016/j.tibs.2017.11.00429174173)
Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684–697.e9 (2017). (PMID: 10.1016/j.molcel.2017.04.026285526165521213)
Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006). (PMID: 10.1016/j.molcel.2006.05.04016857587)
Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007). (PMID: 10.1016/j.cell.2007.02.00517320507)
Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife https://doi.org/10.7554/eLife.21856 (2017).
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008). (PMID: 10.1038/ng.154185528462769248)
Wang, Z. et al. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development. Biol. Open https://doi.org/10.1242/bio.029637 (2018).
Gunesdogan, U., Jackle, H. & Herzig, A. A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes. EMBO Rep. 11, 772–776 (2010). (PMID: 10.1038/embor.2010.124208144222948182)
Strassburger, K. et al. Oxygenation and adenosine deaminase support growth and proliferation of ex vivo cultured Drosophila wing imaginal discs. Development 144, 2529–2538 (2017). (PMID: 28526754)
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006). (PMID: 10.1038/nmeth86616554833)
Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007). (PMID: 10.1073/pnas.0611511104173606441805588)
Ahmad, K. & Spens, A. E. Separate Polycomb response elements control chromatin state and activation of the vestigial gene. PLoS Genet. 15, e1007877 (2019). (PMID: 10.1371/journal.pgen.1007877314255026730940)
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018). (PMID: 10.1038/nprot.2018.01529651053)
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018). (PMID: 10.1093/nar/gky379297909896030816)
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 10.1186/gb-2009-10-3-r25192611742690996)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 10.1038/nmeth.1923223882863322381)
Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 10.1186/gb-2008-9-9-r137187989822592715)
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP–seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012). (PMID: 10.1038/nprot.2012.10122936215)
Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012). (PMID: 10.1038/nature10730222179373272464)
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015). (PMID: 10.1093/bioinformatics/btv14525765347)
المشرفين على المادة: EC 6.2.1.1 (Acetate-CoA Ligase)
72-89-9 (Acetyl Coenzyme A)
0 (Chromatin)
0 (Drosophila Proteins)
0 (Fatty Acids)
0 (Histones)
K3Z4F929H6 (Lysine)
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240612 Latest Revision: 20240623
رمز التحديث: 20240623
مُعرف محوري في PubMed: PMC11168921
DOI: 10.1038/s41586-024-07471-4
PMID: 38839952
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07471-4