دورية أكاديمية

The role of CO 2 in the genesis of Dabie-type porphyry molybdenum deposits.

التفاصيل البيبلوغرافية
العنوان: The role of CO 2 in the genesis of Dabie-type porphyry molybdenum deposits.
المؤلفون: Jiang ZQ; State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China., Shang LB; State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. shanglinbo@vip.gyig.ac.cn., Williams-Jones AE; Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada., Wang XS; State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. wangxinsong@mail.gyig.ac.cn., Zhang L; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China., Ni HW; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China., Hu RZ; State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China., Bi XW; State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
المصدر: Nature communications [Nat Commun] 2024 Jun 06; Vol. 15 (1), pp. 4849. Date of Electronic Publication: 2024 Jun 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: Porphyry-type molybdenum deposits, many of which are in China, supply most of the World's molybdenum. Of particular importance are the molybdenum deposits located in the Qinling-Dabie region that are responsible for more than half of China's molybdenum production. A feature that distinguishes this suite of deposits from the better-known Climax and Endako sub-types of porphyry molybdenum deposits is their formation from CO 2 -rich magmatic-hydrothermal fluids. The role of CO 2 , if any, in the transport of molybdenum by these fluids, however, is poorly understood. We conducted experiments on the partitioning of molybdenum between H 2 O-CO 2 , H 2 O-NaCl, and H 2 O-NaCl-CO 2 fluids and a felsic melt at 850 °C and 100 and 200 MPa. Here we show that the exsolution of separate (immiscible) brine and vapor leads to the very high brine D Mo values needed for efficient extraction of Mo from the magmas forming Dabie-type porphyry molybdenum deposits.
(© 2024. The Author(s).)
References: Sinclair, W. D. Porphyry deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, 223–243 (2007).
Mi, M. et al. Geochronology and geochemistry of the giant Qian’echong Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting. Gondwana Res. 27, 1217–1235 (2015). (PMID: 10.1016/j.gr.2014.05.006)
Audétat, A. & Li, W. The genesis of Climax-type porphyry Mo deposits: Insights from fluid inclusions and melt inclusions. Ore Geol. Rev. 88, 436–460 (2017). (PMID: 10.1016/j.oregeorev.2017.05.018)
Chen, Y. J., Wang, P., Li, N., Yang, Y. F. & Pirajno, F. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geol. Rev. 81, 405–430 (2017). (PMID: 10.1016/j.oregeorev.2016.03.025)
Mao, J. W. et al. Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: Characteristics and tectonic settings. Ore Geol. Rev. 43, 264–293 (2011). (PMID: 10.1016/j.oregeorev.2011.07.009)
Chen, Y. J., Zhang, C., Wang, P., Pirajno, F. & Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 81, 602–640 (2017). (PMID: 10.1016/j.oregeorev.2016.04.017)
Chen, Y. J. & Li, N. Nature of ore-fluid of intracontinental intrusion-related hypothermal deposits and its difference from those in island arcs. Acta Petrologica Sin. 25, 2477–2508 (2009).
Chen, Y. & Wang, Y. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: implications for the nature of the porphyry systems of post-collisional tectonic settings. Int. Geol. Rev. 53, 635–655 (2011). (PMID: 10.1080/00206811003783422)
Li, N. et al. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geol. Rev. 48, 442–459 (2012). (PMID: 10.1016/j.oregeorev.2012.06.002)
Ni, P. et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China. Ore Geol. Rev. 65, 1078–1094 (2015). (PMID: 10.1016/j.oregeorev.2014.09.017)
Yang, Y. F. et al. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: A case of NaCl-poor, CO 2 -rich fluid systems. J. Geochem. Explor. 124, 1–13 (2013). (PMID: 10.1016/j.gexplo.2012.06.019)
Chen, Y. J., Franco, P., Li, N., Deng, X. H. & Yang, Y. F. Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, P R China. (Springer, Singapore, 2022).
Candela, P. A. & Holland, H. D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim. Cosmochim. Acta 48, 373–380 (1984). (PMID: 10.1016/0016-7037(84)90257-6)
Keppler, H. & Wyllie, P. J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H 2 O−HCl and haplogranite-H 2 O−HF. Contrib. Mineral. Petrol. 109, 139–150 (1991). (PMID: 10.1007/BF00306474)
Webster, J. D. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochim. Cosmochim. Acta 61, 1017–1029 (1997). (PMID: 10.1016/S0016-7037(96)00395-X)
Tattitch, B. C. & Blundy, J. D. Cu-Mo partitioning between felsic melts and saline-aqueous fluids as a function of X NaCleq , fO 2 , and fS 2 . Am. Mineral. 102, 1987–2006 (2017). (PMID: 10.2138/am-2017-5998)
Fang, J. & Audétat, A. The effects of pressure, fO 2 , fS 2 and melt composition on the fluid–melt partitioning of Mo: Implications for the Mo-mineralization potential of upper crustal granitic magmas. Geochim. et Cosmochimi. Acta 336, 1–14 (2022). (PMID: 10.1016/j.gca.2022.08.016)
Zhao, P. et al. The partitioning behavior of Mo during magmatic fluid exsolution and its implications for Mo mineralization. Geochim. et Cosmochim. Acta 115, 126 (2022).
Jiang, Z. et al. An experimental investigation into the partition of Mo between aqueous fluids and felsic melts: Implications for the genesis of porphyry Mo ore deposits. Ore Geol. Rev. 134, 104144 (2021). (PMID: 10.1016/j.oregeorev.2021.104144)
Farges, F., Siewert, R., Brown, G. E., Guesdon, A. & Morin, G. Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum. Can. Mineralogist 44, 731–753 (2006). (PMID: 10.2113/gscanmin.44.3.731)
Shang, L. B. et al. An experimental study of the solubility and speciation of MoO 3 (s) in hydrothermal fluids at temperatures up to 350 °C. Econ. Geol. 115, 661–669 (2020). (PMID: 10.5382/econgeo.4715)
Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017). (PMID: 10.1016/j.gca.2016.11.007)
Li, N. et al. Molybdenum solubility and partitioning in H 2 O-CO 2 -NaCl fluids at 600 °C and 200 MPa. Chem. Geol. 583, 120438 (2021).
Guan, Q., Mei, Y., Liu, W. & Brugger, J. Different metal coordination in sub- and super-critical fluids: Do molybdenum(IV) chloride complexes contribute to mass transfer in magmatic systems? Geochimi. et Cosmochim. Acta 354, 240–251 (2023). (PMID: 10.1016/j.gca.2023.06.011)
Li, X. H. et al. Phase equilibria, thermodynamic properties, and solubility of quartz in saline-aqueous-carbonic fluids: Application to orogenic and intrusion-related gold deposits. Geochim. et Cosmochim. Acta 283, 201–221 (2020). (PMID: 10.1016/j.gca.2020.06.008)
Behrens, H., Ohlhorst, S., Holtz, F. & Champenois, M. CO 2 solubility in dacitic melts equilibrated with H 2 O-CO 2 fluids: Implications for modeling the solubility of CO 2 in silicic melts. Geochim. et Cosmochim. Acta 68, 4687–4703 (2004). (PMID: 10.1016/j.gca.2004.04.019)
Botcharnikov, R. E., Holtz, F. & Behrens, H. The effect of CO 2 on the solubility of H 2 O-Cl fluids in andesitic melt. Eur. J. Mineral. 19, 671–680 (2007). (PMID: 10.1127/0935-1221/2007/0019-1752)
Bowers, T. S. & Helgeson, H. C. Calculation of the thermodynamic and geochemical consequences of non ideal mixing in the system H 2 O–CO 2 –NaCl on phase relations in geologic systems: Equation of state for H 2 O–CO 2 –NaCl. Geochim. et Cosmochim. Acta 47, 1247–1275 (1983). (PMID: 10.1016/0016-7037(83)90066-2)
Roedder, E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geol. 66, 98–118 (1971). (PMID: 10.2113/gsecongeo.66.1.98)
Audetat, A. Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at cave peak, texas. J. Petrol. 51, 1739–1760 (2010). (PMID: 10.1093/petrology/egq037)
Audétat, A., Pettke, T., Heinrich, C. A. & Bodnar, R. J. Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103, 877–908 (2008). (PMID: 10.2113/gsecongeo.103.5.877)
Li, N., Chen, Y. J., Santosh, M. & Pirajno, F. Late mesozoic granitoids in the qinling orogen, central China, and tectonic significance. Earth Sci. Rev. 182, 141–173 (2018). (PMID: 10.1016/j.earscirev.2018.05.004)
Sterner, S. M. & Bodnar, R. J. Synthetic fluid inclusions; X, Experimental determination of PVTX properties in the CO 2 -H 2 O system to 6 kb and 700. Am. J. Sci. 291, 1–54 (1991). (PMID: 10.2475/ajs.291.1.1)
Chou, I.-M. Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures. Hydrothermal experimental techniques 61–99 (1987).
Lan, T.-G. et al. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: A case study of the ∼128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. J. Asian Earth Sci. 160, 460–489 (2018). (PMID: 10.1016/j.jseaes.2017.07.014)
Bodnar, R. J. Revised equation and table for determining the freezing point depression of H 2 O-Nacl solutions. Geochim. et Cosmochim. Acta 57, 683–684 (1993). (PMID: 10.1016/0016-7037(93)90378-A)
Sterner, S. M. & Bodnar, R. J. Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochim. Acta 48, 2659–2668 (1984). (PMID: 10.1016/0016-7037(84)90314-4)
Nagaseki, H. & Hayashi, K. Synthetic fluid inclusions in the systems NaCl-H 2 O and NaCl-CO 2 -H 2 O: dissolution Temperatures of Halite. Resour. Geol. 56, 133–140 (2006). (PMID: 10.1111/j.1751-3928.2006.tb00274.x)
Schmidt, C. & Bodnar, R. J. Synthetic fluid inclusions: XVI. PVTX properties in the system H 2 O-NaCl-CO 2 at elevated temperatures, pressures, and salinities. Geochim. et Cosmochim. Acta 64, 3853–3869 (2000). (PMID: 10.1016/S0016-7037(00)00471-3)
Heinrich, C. A. et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. et Cosmochim. Acta 67, 3473–3497 (2003). (PMID: 10.1016/S0016-7037(03)00084-X)
Guillong, M. et al. SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Miner. Assoc. Can. Short Course 40, 328–333 (2008).
Liu, Y. et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257, 34–43 (2008). (PMID: 10.1016/j.chemgeo.2008.08.004)
Driesner, T. & Heinrich, C. A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000bar, and 0 to 1 X NaCl . Geochim. et Cosmochim. Acta 71, 4880–4901 (2007). (PMID: 10.1016/j.gca.2006.01.033)
Duan, Z., Møller, N. & Weare, J. H. Equation of state for the NaCl-H 2 O-CO 2 system: prediction of phase equilibria and volumetric properties. Geochim. et Cosmochim. Acta 59, 2869–2882 (1995). (PMID: 10.1016/0016-7037(95)00182-4)
Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011). (PMID: 10.1016/j.oregeorev.2011.05.006)
معلومات مُعتمدة: 41673067 National Natural Science Foundation of China (National Science Foundation of China)
تواريخ الأحداث: Date Created: 20240606 Latest Revision: 20240609
رمز التحديث: 20240609
مُعرف محوري في PubMed: PMC11156875
DOI: 10.1038/s41467-024-49275-0
PMID: 38844505
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-49275-0