دورية أكاديمية

Towards realizing nano-enabled precision delivery in plants.

التفاصيل البيبلوغرافية
العنوان: Towards realizing nano-enabled precision delivery in plants.
المؤلفون: Lowry GV; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. glowry@andrew.cmu.edu., Giraldo JP; Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA. juanpablo.giraldo@ucr.edu., Steinmetz NF; Department of NanoEngineering, University of California San Diego, San Diego, CA, USA.; Department of Bioengineering, University of California San Diego, San Diego, CA, USA.; Department of Radiology, University of California San Diego, San Diego, CA, USA.; Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA.; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA.; Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA.; Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA.; Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA., Avellan A; UMR 5563 CNRS, Toulouse, Occitanie, France., Demirer GS; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA., Ristroph KD; Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA., Wang GJ; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA., Hendren CO; Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA., Alabi CA; Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA., Caparco A; Department of NanoEngineering, University of California San Diego, San Diego, CA, USA., da Silva W; The Connecticut Agricultural Research Station, New Haven, CT, USA., González-Gamboa I; Department of Molecular Biology, University of California San Diego, San Diego, CA, USA., Grieger KD; Applied Ecology, North Carolina State University, Raleigh, NC, USA., Jeon SJ; Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA., Khodakovskaya MV; Applied Science, University of Arkansas, Little Rock, AK, USA., Kohay H; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA., Kumar V; Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA., Muthuramalingam R; The Connecticut Agricultural Research Station, New Haven, CT, USA., Poffenbarger H; Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA., Santra S; Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA., Tilton RD; Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA., White JC; The Connecticut Agricultural Research Station, New Haven, CT, USA.
المصدر: Nature nanotechnology [Nat Nanotechnol] 2024 Jun 06. Date of Electronic Publication: 2024 Jun 06.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101283273 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-3395 (Electronic) Linking ISSN: 17483387 NLM ISO Abbreviation: Nat Nanotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group, 2006-
مستخلص: Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
(© 2024. Springer Nature Limited.)
References: van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021). (PMID: 3711768410.1038/s43016-021-00322-9)
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019). (PMID: 31150427654423310.1371/journal.pone.0217148)
Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014). (PMID: 10.1038/nclimate2317)
Mbow, C. et al. Food security. In: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) 437–550 (Cambridge Univ. Press, 2022).
Borrelli, P. et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nat. Sustain. 6, 103–112 (2022). (PMID: 10.1038/s41893-022-00988-4)
Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020). (PMID: 10.1038/s43016-020-0110-1)
Servin, A. D. & White, J. C. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1, 9–12 (2016). (PMID: 10.1016/j.impact.2015.12.002)
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019). (PMID: 3116807310.1038/s41565-019-0461-7)
Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019). (PMID: 3116807110.1038/s41565-019-0439-5)
Wang, Y. et al. Surface coated sulfur nanoparticles suppress Fusarium disease in field grown tomato: increased yield and nutrient biofortification. J. Agric. Food Chem. 70, 14377–14385 (2022). (PMID: 3633113410.1021/acs.jafc.2c05255)
Deng, C. et al. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Sci. Total Environ. 905, 167799 (2023). (PMID: 3783804710.1016/j.scitotenv.2023.167799)
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020). (PMID: 32341352718476210.1038/s41467-020-15731-w)
Santana, I. et al. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 16, 12156–12173 (2022). (PMID: 3594304510.1021/acsnano.2c02714)
Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019). (PMID: 308044811046189210.1038/s41565-019-0382-5)
Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019). (PMID: 3107496710.1021/acsnano.8b09781)
Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022). (PMID: 35577779911037910.1038/s41467-022-30185-y)
Ristroph, K. et al. Flash nanoprecipitation as an agrochemical nanocarrier formulation platform: phloem uptake and translocation after foliar administration. ACS Agric. Sci. Technol. 3, 987–995 (2023). (PMID: 380212091066406710.1021/acsagscitech.3c00204)
Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023). (PMID: 3784041310.1002/smll.202304588)
Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019). (PMID: 3080448210.1038/s41565-019-0375-4)
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007). (PMID: 1865442610.1038/nnano.2007.387)
van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019). (PMID: 31695150722703210.1038/s41565-019-0567-y)
Li, M., Al-Jamal, K. T., Kostarelos, K. & Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4, 6303–6317 (2010). (PMID: 2094592510.1021/nn1018818)
Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018). (PMID: 3019165810.1002/smll.201802086)
Santana, I. et al. Targeted delivery of plasmid DNA to chloroplasts by nanomaterials. In Vitro Cell. Dev. Biol. Anim. 58, S14–S14 (2022).
Thagun, C., Chuah, J.-A. & Numata, K. Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides. Adv. Sci. 6, 1902064 (2019). (PMID: 10.1002/advs.201902064)
Zhang, Y. et al. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ. Sci. Technol. 55, 10758–10768 (2021). (PMID: 3428357110.1021/acs.est.1c01065)
Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020). (PMID: 3199891010.1039/C9NR08100C)
Spielman-Sun, E. et al. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ. Sci. Nano 6, 2508–2519 (2019). (PMID: 10.1039/C9EN00626E)
Wu, H. et al. Phloem delivery of fludioxonil by plant amino acid transporter-mediated polysuccinimide nanocarriers for controlling Fusarium wilt in banana. J. Agric. Food Chem. 69, 2668–2678 (2021). (PMID: 3362958110.1021/acs.jafc.0c07028)
Li, J., Li, S., Du, M., Song, Z. & Han, H. Nuclear delivery of exogenous gene in mature plants using nuclear location signal and cell-penetrating peptide nanocomplex. ACS Appl. Nano Mater. 6, 160–170 (2023). (PMID: 10.1021/acsanm.2c04213)
Thagun, C. et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 16, 3506–3521 (2022). (PMID: 35195009894539610.1021/acsnano.1c07723)
Kim, C., Chandrasekaran, A., Jha, A. & Ramprasad, R. Active-learning and materials design: the example of high glass transition temperature polymers. MRS Commun. 9, 860–866 (2019). (PMID: 10.1557/mrc.2019.78)
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018). (PMID: 29532027583300710.1021/acscentsci.7b00572)
Shmilovich, K. et al. Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained molecular simulation. J. Phys. Chem. B 124, 3873–3891 (2020). (PMID: 3218041010.1021/acs.jpcb.0c00708)
Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022). (PMID: 35821637927329510.1016/j.ymthe.2022.07.007)
Brochu, E., Cora, V. M. & de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs/1012.2599 (2010).
Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016). (PMID: 2676022810.1021/acs.nanolett.5b04467)
Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020). (PMID: 3262844210.1021/acsnano.9b09178)
Yu, M. et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7, 11271–11280 (2017). (PMID: 10.1039/C6RA27345A)
Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10, 257–278 (2016). (PMID: 2606757110.3109/17435390.2015.1048326)
Avital, A. et al. Foliar delivery of siRNA particles for treating viral infections in agricultural grapevines. Adv. Funct. Mater. 31, 2101003 (2021). (PMID: 34744552761193310.1002/adfm.202101003)
Chang, F.-P. et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B 1, 5279 (2013). (PMID: 3226333110.1039/c3tb20529k)
Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023). (PMID: 372273951024940910.1021/acs.est.3c01154)
Zhang, L., Chen, H., Xie, J., Becton, M. & Wang, X. Interplay of nanoparticle rigidity and its translocation ability through cell membrane. J. Phys. Chem. B 123, 8923–8930 (2019). (PMID: 3156637510.1021/acs.jpcb.9b07452)
Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019). (PMID: 30910954646209410.1073/pnas.1818290116)
Guo, J. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 11, 1105–1111 (2016). (PMID: 2772373010.1038/nnano.2016.172)
Jain, R. G. et al. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 8, 535–548 (2022). (PMID: 3557796010.1038/s41477-022-01152-8)
Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017). (PMID: 2806789810.1038/nplants.2016.207)
Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020). (PMID: 3307796410.1038/s41565-020-00776-1)
Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017). (PMID: 2834587410.1021/acsnano.7b00823)
Santa Cruz, S. Perspective: phloem transport of viruses and macromolecules—what goes in must come out. Trends Microbiol. 7, 237–241 (1999). (PMID: 1036686010.1016/S0966-842X(99)01508-5)
Caparco, A. A., González-Gamboa, I., Hays, S. S., Pokorski, J. K. & Steinmetz, N. F. Delivery of nematicides using TMGMV-derived spherical nanoparticles. Nano Lett. 23, 5785–5793 (2023). (PMID: 3732757210.1021/acs.nanolett.3c01684)
Chariou, P. L. et al. Soil mobility of synthetic and virus-based model nanopesticides. Nat. Nanotechnol. 14, 712–718 (2019). (PMID: 31110265698835910.1038/s41565-019-0453-7)
Cao, J. et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl. Mater. Interfaces 7, 9546–9553 (2015). (PMID: 2590636010.1021/acsami.5b00940)
Ali, Z. et al. DNA–carbon nanotube binding mode determines the efficiency of carbon nanotube-mediated DNA delivery to intact plants. ACS Appl. Nano Mater. 5, 4663–4676 (2022). (PMID: 10.1021/acsanm.1c03482)
Xu, T. et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core–shell nanostructures. ACS Nano 16, 6034–6048 (2022). (PMID: 3540458810.1021/acsnano.1c11490)
Zhang, Y. et al. Star polymers with designed reactive oxygen species scavenging and agent delivery functionality promote plant stress tolerance. ACS Nano 16, 4467–4478 (2022). (PMID: 3517987510.1021/acsnano.1c10828)
Ng, K. K. et al. Intracellular delivery of proteins via fusion peptides in intact plants. PLoS ONE 11, e0154081 (2016). (PMID: 27100681483965810.1371/journal.pone.0154081)
Tör, M., Lotze, M. T. & Holton, N. Receptor-mediated signalling in plants: molecular patterns and programmes. J. Exp. Bot. 60, 3645–3654 (2009). (PMID: 19628572276682410.1093/jxb/erp233)
Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci. Nano 9, 2691–2703 (2022). (PMID: 10.1039/D2EN00158F)
Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020). (PMID: 3224378810.1016/j.cell.2020.02.001)
Popescu, M. & Ungureanu, C. Biosensors in food and healthcare industries: bio-coatings based on biogenic nanoparticles and biopolymers. Coat. World 13, 486 (2023).
González-Gamboa, I., Manrique, P., Sánchez, F. & Ponz, F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. J. Biotechnol. 254, 17–24 (2017). (PMID: 2862568010.1016/j.jbiotec.2017.06.014)
Song, E.-Q. et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5, 761–770 (2011). (PMID: 21250650305598210.1021/nn1011336)
Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). (PMID: 10.1186/s12951-018-0392-8)
Zhang, N. et al. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 40, e1900096 (2019). (PMID: 3111197910.1002/marc.201900096)
Nemiwal, M., Zhang, T. C. & Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Technol. 156, 110006 (2022). (PMID: 3514411910.1016/j.enzmictec.2022.110006)
Mozafari, M. R. M. Nano-immunoengineering: opportunities and challenges. Curr. Opin. Biomed. Eng. 10, 51–59 (2019). (PMID: 10.1016/j.cobme.2019.02.001)
Wu, Z. et al. One-step supramolecular multifunctional coating on plant virus nanoparticles for bioimaging and therapeutic applications. ACS Appl. Mater. Interfaces 14, 13692–13702 (2022). (PMID: 35258299915973810.1021/acsami.1c22690)
Caparco, A. A., Dautel, D. R. & Champion, J. A. Protein mediated enzyme immobilization. Small 18, e2106425 (2022). (PMID: 3518203010.1002/smll.202106425)
Gao, Y. et al. Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy. Front. Bioeng. Biotechnol. 9, 720508 (2021). (PMID: 34490227841830210.3389/fbioe.2021.720508)
Feger, G., Angelov, B. & Angelova, A. Prediction of amphiphilic cell-penetrating peptide building blocks from protein-derived amino acid sequences for engineering of drug delivery nanoassemblies. J. Phys. Chem. B 124, 4069–4078 (2020). (PMID: 3233799110.1021/acs.jpcb.0c01618)
Kelly, L., Maier, K. E., Yan, A. & Levy, M. A comparative analysis of cell surface targeting aptamers. Nat. Commun. 12, 6275 (2021). (PMID: 34725326856083310.1038/s41467-021-26463-w)
Care, A., Bergquist, P. L. & Sunna, A. Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33, 259–268 (2015). (PMID: 2579648710.1016/j.tibtech.2015.02.005)
Baneyx, F. & Schwartz, D. T. Selection and analysis of solid-binding peptides. Curr. Opin. Biotechnol. 18, 312–317 (2007). (PMID: 1761638710.1016/j.copbio.2007.04.008)
Peltomaa, R., Benito-Peña, E., Barderas, R. & Moreno-Bondi, M. C. Phage display in the quest for new selective recognition elements for biosensors. ACS Omega 4, 11569–11580 (2019). (PMID: 31460264668208210.1021/acsomega.9b01206)
Teymennet-Ramírez, K. V., Martínez-Morales, F. & Trejo-Hernández, M. R. Yeast surface display system: strategies for improvement and biotechnological applications. Front. Bioeng. Biotechnol. 9, 794742 (2022). (PMID: 35083204878440810.3389/fbioe.2021.794742)
Niebling, S. et al. FoldAffinity: binding affinities from nDSF experiments. Sci Rep. 11, 9572 (2021). (PMID: 33953265809991310.1038/s41598-021-88985-z)
Ashrafizadeh, M. et al. Nanoparticles targeting STATs in cancer therapy. Cells 8, 1158 (2019). (PMID: 31569687682930510.3390/cells8101158)
Juang, V., Chang, C.-H., Wang, C.-S., Wang, H.-E. & Lo, Y.-L. pH-responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 15, e1903296 (2019). (PMID: 3170970710.1002/smll.201903296)
Hasim, S. & Coleman, J. J. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 11, 869–883 (2019). (PMID: 30994368654350410.4155/fmc-2018-0465)
Fischer, J. et al. Targeted drug delivery in plants: enzyme-responsive lignin nanocarriers for the curative treatment of the worldwide grapevine trunk disease Esca. Adv. Sci. 6, 1802315 (2019). (PMID: 10.1002/advs.201802315)
Sondhi, P., Maruf, M. H. U. & Stine, K. J. Nanomaterials for biosensing lipopolysaccharide. Biosensors 10, 2 (2019). (PMID: 31877825716830910.3390/bios10010002)
Angsantikul, P. et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 1, 1800016 (2018). (PMID: 10.1002/adtp.201800016)
Vega-Vásquez, P., Mosier, N. S. & Irudayaraj, J. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79 (2020). (PMID: 32133353704130710.3389/fbioe.2020.00079)
Wang, A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr. Opin. Virol. 48, 10–16 (2021). (PMID: 3378457910.1016/j.coviro.2021.03.002)
Solovyev, A. G. et al. Distinct mechanisms of endomembrane reorganization determine dissimilar transport pathways in plant RNA viruses. Plants 11, 2403 (2022). (PMID: 36145804950420610.3390/plants11182403)
Kim, W. et al. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv. Drug Deliv. Rev. 192, 114635 (2023). (PMID: 3650388510.1016/j.addr.2022.114635)
Borgatta, J. et al. Influence of CuO nanoparticle aspect ratio and surface charge on disease suppression in tomato (Solanum lycopersicum). J. Agric. Food Chem. 71, 9644–9655 (2023). (PMID: 3732159110.1021/acs.jafc.2c09153)
Spielman-Sun, E. et al. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH) 2 , and CuS nanoparticles. Environ. Sci. Technol. 52, 9777–9784 (2018). (PMID: 3007832910.1021/acs.est.8b02111)
Gao, X. et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018). (PMID: 2938579410.1021/acs.est.7b05816)
Avellan, A. et al. Remote biodegradation of Ge–imogolite nanotubes controlled by the iron homeostasis of Pseudomonas brassicacearum. Environ. Sci. Technol. 50, 7791–7798 (2016). (PMID: 2734768710.1021/acs.est.6b01455)
McManus, P. et al. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ. Toxicol. Chem. 37, 2619–2632 (2018). (PMID: 2997849310.1002/etc.4226)
Li, C. et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. Ann. Bot. 123, 57–68 (2019). (PMID: 3002041810.1093/aob/mcy135)
Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014). (PMID: 2463334310.1038/nmat3890)
Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle–protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020). (PMID: 3175191410.1016/j.plaphy.2019.10.036)
Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci. Nano 8, 1067–1080 (2021). (PMID: 10.1039/D1EN00140J)
Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (eds Kahlen, F.-J. et al.) 85–113 (Springer, 2017).
Semeraro, C., Lezoche, M., Panetto, H. & Dassisti, M. Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021). (PMID: 10.1016/j.compind.2021.103469)
Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). (PMID: 2651201910.1136/heartjnl-2015-308044)
Votta, E. et al. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013). (PMID: 2317442110.1016/j.jbiomech.2012.10.026)
Yeats, T. H. & Rose, J. K. C. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013). (PMID: 23893170376266410.1104/pp.113.222737)
Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012). (PMID: 2307363110.1152/physrev.00038.2011)
Zimmermann, U. et al. Xylem water transport—is the available evidence consistent with the cohesion theory. Plant Cell. Environ. 17, 1169–1181 (1994). (PMID: 10.1111/j.1365-3040.1994.tb02015.x)
De Schepper, V., De Swaef, T., Bauweraerts, I. & Steppe, K. Phloem transport: a review of mechanisms and controls. J. Exp. Bot. 64, 4839–4850 (2013). (PMID: 2410629010.1093/jxb/ert302)
Frenkel, D. & Smit, B. in Understanding Molecular Simulation 2nd edn (eds Frenkel, D. & Smit, B.) 63–107 (Academic Press, 2002).
Lemkul, J. A., Huang, J., Roux, B. & MacKerell, A. D. Jr An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem. Rev. 116, 4983–5013 (2016). (PMID: 26815602486589210.1021/acs.chemrev.5b00505)
Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012). (PMID: 2257782510.1146/annurev-biophys-042910-155245)
Marrink, S. J. & Tieleman, D. P. Perspective on the MARTINI model. Chem. Soc. Rev. 42, 6801–6822 (2013). (PMID: 2370825710.1039/c3cs60093a)
Marrink, S. J. et al. Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019). (PMID: 30623647650964610.1021/acs.chemrev.8b00460)
Murtola, T., Bunker, A., Vattulainen, I., Deserno, M. & Karttunen, M. Multiscale modeling of emergent materials: biological and soft matter. Phys. Chem. Chem. Phys. 11, 1869–1892 (2009). (PMID: 1927999910.1039/b818051b)
Cosgrove, D. J. Building an extensible cell wall. Plant Physiol. 189, 1246–1277 (2022). (PMID: 35460252923772910.1093/plphys/kiac184)
Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021). (PMID: 3398617510.1126/science.abf2824)
Roth-Nebelsick, A., Hassiotou, F. & Veneklaas, E. J. Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol. 151, 2018–2027 (2009). (PMID: 19864375278599610.1104/pp.109.146969)
Schulte, P. J. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytol. 193, 721–729 (2012). (PMID: 2214224910.1111/j.1469-8137.2011.03986.x)
Koch, T., Heck, K., Schröder, N., Class, H. & Helmig, R. A new simulation framework for soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone J. 17, 170210 (2018). (PMID: 10.2136/vzj2017.12.0210)
Mai, T. H., Schnepf, A., Vereecken, H. & Vanderborght, J. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant Soil 439, 273–292 (2019). (PMID: 10.1007/s11104-018-3890-4)
Porter, T. K. et al. A theory of mechanical stress-induced H 2 O 2 signaling waveforms in planta. J. Math. Biol. 86, 11 (2022). (PMID: 3647809210.1007/s00285-022-01835-y)
Valli, A., Koponen, A., Vesala, T. & Timonen, J. Simulations of water flow through bordered pits of conifer xylem. J. Stat. Phys. 107, 121–142 (2002). (PMID: 10.1023/A:1014554419722)
Sheiner, L. B. & Steimer, J. L. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu. Rev. Pharmacol. Toxicol. 40, 67–95 (2000). (PMID: 1083612810.1146/annurev.pharmtox.40.1.67)
Ma, Y., Dixit, V., Innes, M. J., Guo, X. & Rackauckas, C. A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions. In 2021 IEEE High Performance Extreme Computing Conference (HPEC) 1–9 (IEEE, 2021).
Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010). (PMID: 10.1016/S1672-6529(10)60253-3)
Comtet, J., Jensen, K. H., Turgeon, R., Stroock, A. D. & Hosoi, A. E. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat. Plants 3, 17032 (2017). (PMID: 2831908210.1038/nplants.2017.32)
Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S. & Gil, L. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front. Plant Sci. 7, 427 (2016). (PMID: 27066059481489810.3389/fpls.2016.00427)
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007). (PMID: 17379667185159310.1073/pnas.0608361104)
Scarpella, E. & Meijer, A. H. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164, 209–242 (2004). (PMID: 3387355710.1111/j.1469-8137.2004.01191.x)
Schlüter, U. & Weber, A. P. M. Regulation and evolution of C 4 photosynthesis. Annu. Rev. Plant Biol. 71, 183–215 (2020). (PMID: 3213160310.1146/annurev-arplant-042916-040915)
Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). (PMID: 10.1063/1.4812323)
de Pablo, J. J. et al. New frontiers for the materials genome initiative. npj Comput. Mater. 5, 41 (2019). (PMID: 10.1038/s41524-019-0173-4)
Joshi, A. et al. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl. Nanosci. 8, 1399–1414 (2018). (PMID: 10.1007/s13204-018-0801-1)
Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020). (PMID: 32637592731452210.1126/sciadv.aaz0495)
Zhang, H. et al. Gold-nanocluster-mediated delivery of siRNA to intact plant cells for efficient gene knockdown. Nano Lett. 21, 5859–5866 (2021). (PMID: 341527791053902610.1021/acs.nanolett.1c01792)
Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017). (PMID: 2909958110.1021/acsnano.7b05723)
Chacón-Madrid, K., da Silva Francischini, D. & Arruda, M. A. Z. The role of silver nanoparticles effects in the homeostasis of metals in soybean cultivation through qualitative and quantitative laser ablation bioimaging. J. Trace Elem. Med. Biol. 79, 127207 (2023). (PMID: 3722474410.1016/j.jtemb.2023.127207)
Koelmel, J., Leland, T., Wang, H., Amarasiriwardena, D. & Xing, B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ. Pollut. 174, 222–228 (2013). (PMID: 2327732610.1016/j.envpol.2012.11.026)
Vogel-Mikuš, K., Pongrac, P., Kump, P., Kodre, A. & Arčon, I. in X-Ray Fluorescence in Biological Sciences (eds Singh, V. K. et al.) Ch. 9, 151–162 (Wiley, 2022).
Stegemeier, J. P., Colman, B. P., Schwab, F., Wiesner, M. R. & Lowry, G. V. Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 51, 4936–4943 (2017). (PMID: 2838388210.1021/acs.est.6b06491)
Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022). (PMID: 3481155310.1038/s41565-021-01018-8)
Staedler, Y. M., Masson, D. & Schönenberger, J. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging. PLoS ONE 8, e75295 (2013). (PMID: 24086499378551510.1371/journal.pone.0075295)
Avellan, A. et al. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nat. Nanotechnol. 13, 1072–1077 (2018). (PMID: 3010462110.1038/s41565-018-0231-y)
López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO 2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689–3693 (2010). (PMID: 20187606285246010.1021/jf904472e)
Larue, C. et al. Fate of pristine TiO 2 nanoparticles and aged paint-containing TiO 2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 273, 17–26 (2014). (PMID: 2470947810.1016/j.jhazmat.2014.03.014)
Dan, Y. et al. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO 2 nanoparticles. Anal. Bioanal. Chem. 408, 5157–5167 (2016). (PMID: 2712997710.1007/s00216-016-9565-1)
Bao, D., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front. Plant Sci. 7, 32 (2016). (PMID: 26870057473410110.3389/fpls.2016.00032)
Keller, A. A., Huang, Y. & Nelson, J. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J. Nanopart. Res. 20, 1–13 (2018). (PMID: 10.1007/s11051-018-4192-8)
Montaño, M. D. et al. Exploring nanogeochemical environments: new insights from single particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem. 6, 943–952 (2022). (PMID: 35495366903718210.1021/acsearthspacechem.1c00350)
Kang, M. et al. Regulatory mechanisms of phytotoxicity and corona formation on sprouts by differently charged and sized polystyrene micro/nano-plastics. Environ. Sci. Nano 10, 1244–1256 (2023). (PMID: 10.1039/D2EN00915C)
Yoo, S.-D., Cho, Y.-H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007). (PMID: 1758529810.1038/nprot.2007.199)
Kieran, P. M., MacLoughlin, P. F. & Malone, D. M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997). (PMID: 948771710.1016/S0168-1656(97)00163-6)
Shanks, J. V. & Morgan, J. Plant ‘hairy root’ culture. Curr. Opin. Biotechnol. 10, 151–155 (1999). (PMID: 1020914510.1016/S0958-1669(99)80026-3)
Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014). (PMID: 24868032421307910.1104/pp.114.239392)
Moscatiello, R., Baldan, B. & Navazio, L. Plant cell suspension cultures. Methods Mol. Biol. 953, 77–93 (2013). (PMID: 2307387710.1007/978-1-62703-152-3_5)
Tan, X.-M., Lin, C. & Fugetsu, B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon N. Y. 47, 3479–3487 (2009). (PMID: 10.1016/j.carbon.2009.08.018)
Lin, C., Fugetsu, B., Su, Y. & Watari, F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170, 578–583 (2009). (PMID: 1950575710.1016/j.jhazmat.2009.05.025)
Santos, A. R. et al. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J. Nanobiotechnol. 8, 24 (2010). (PMID: 10.1186/1477-3155-8-24)
Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E. & Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6, 2128–2135 (2012). (PMID: 2236084010.1021/nn204643g)
Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009). (PMID: 1919150010.1021/nl803083u)
Spanò, L., Mariotti, D., Pezzotti, M., Damiani, F. & Arcioni, S. Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 73, 523–530 (1987). (PMID: 2424110810.1007/BF00289189)
Mohebodini, M., Fathi, R. & Mehri, N. Optimization of hairy root induction in chicory (Cichorium intybus L.) and effects of nanoparticles on secondary metabolites accumulation. Iran. J. Genet. Plant Breed. 6, 60–68 (2017).
Chung, I.-M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Cult. 134, 95–106 (2018). (PMID: 10.1007/s11240-018-1402-0)
Chung, I.-M., Rajakumar, G. & Thiruvengadam, M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol. Hung. 69, 97–109 (2018). (PMID: 2957591910.1556/018.68.2018.1.8)
Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. 57, 19663–19677 (2023). (PMID: 3794860910.1021/acs.est.3c05686)
Bao, G., Tang, M., Zhao, J. & Zhu, X. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res. 11, 6 (2021). (PMID: 33464410781585610.1186/s13550-021-00750-5)
Liu, Q. et al. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J. Biol. Eng. 14, 1 (2020). (PMID: 31956340695650710.1186/s13036-019-0223-y)
Li, G. et al. Currently available strategies for target identification of bioactive natural products. Front. Chem 9, 761609 (2021). (PMID: 34660543851541610.3389/fchem.2021.761609)
Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. & O’Keefe, B. R. Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893–918 (2020). (PMID: 32186299849414010.1039/C9NP00068B)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021). (PMID: 3441842310.1016/j.jmb.2021.167208)
Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2023). (PMID: 380368541077638810.1038/s41592-023-02087-4)
Gropp, R. E. NSF: time for big ideas. Bioscience 66, 920–920 (2016). (PMID: 10.1093/biosci/biw125)
Simon, D. & Schiemer, F. Crossing boundaries: complex systems, transdisciplinarity and applied impact agendas. Curr. Opin. Environ. Sustain. 12, 6–11 (2015). (PMID: 10.1016/j.cosust.2014.08.007)
Newell, W. H. & Klein, J. T. Interdisciplinary studies into the 21st century. J. Gen. Educ. 45, 152–169 (1996).
Stokols, D., Hall, K. L., Taylor, B. K. & Moser, R. P. The science of team science: overview of the field and introduction to the supplement. Am. J. Prev. Med. 35, S77–S89 (2008). (PMID: 1861940710.1016/j.amepre.2008.05.002)
Bammer, G. Integration and implementation sciences. In Complex Science for a Complex World (eds Perez, P. & Batten, D.) 95–108 (ANU Press, 2006).
Pohl, C., Truffer, B. & Hirsch-Hadorn, G. Addressing wicked problems through transdisciplinary research. In The Oxford Handbook of Interdisciplinarity 2nd edn (ed. Frodeman, R.) 319–331 (Oxford Univ. Press, 2017).
Alhaddi, H. et al. Triple bottom line and sustainability: a literature review. Bus. Manage. Stud. 1, 6–10 (2015). (PMID: 10.11114/bms.v1i2.752)
Grieger, K. et al. Fostering responsible innovation through stakeholder engagement: case study of North Carolina sweetpotato stakeholders. Sustain. Sci. Pract. Policy 14, 2274 (2022).
Tait, J. Upstream engagement and the governance of science. The shadow of the genetically modified crops experience in Europe. EMBO Rep. 10 (Suppl. 1), S18–S22 (2009).
Merck, A. W., Grieger, K. D. & Kuzma, J. How can we promote the responsible innovation of nano-agrifood research? Environ. Sci. Policy 137, 185–190 (2022). (PMID: 10.1016/j.envsci.2022.08.027)
National Nanotechnology Initiative Strategic Plan (NNI, 2021).
Grieger, K., Merck, A. & Kuzma, J. Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J, Responsib. Technol. 10, 100030 (2022). (PMID: 10.1016/j.jrt.2022.100030)
Park, K. Nanotechnology: what it can do for drug delivery. J. Control. Release 120, 1–3 (2007). (PMID: 17532520194990710.1016/j.jconrel.2007.05.003)
Hua, S., de Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018). (PMID: 30065653605667910.3389/fphar.2018.00790)
Shen, S., Wu, Y., Liu, Y. & Wu, D. High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 12, 4085–4109 (2017). (PMID: 10.2147/IJN.S132780)
Liu, Y., Yang, G., Jin, S., Xu, L. & Zhao, C.-X. Development of high-drug-loading nanoparticles. ChemPlusChem 85, 2143–2157 (2020). (PMID: 3286490210.1002/cplu.202000496)
Mercier, J. & Lindow, S. E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66, 369–374 (2000). (PMID: 106182509183210.1128/AEM.66.1.369-374.2000)
Dror, I., Yaron, B. & Berkowitz, B. Abiotic soil changes induced by engineered nanomaterials: a critical review. J. Contam. Hydrol. 181, 3–16 (2015). (PMID: 2591353510.1016/j.jconhyd.2015.04.004)
Grieger, K. D. et al. Responsible innovation of nano-agrifoods: insights and views from U.S. stakeholders. NanoImpact 24, 100365 (2021). (PMID: 3555982410.1016/j.impact.2021.100365)
Cummings, C. L., Kuzma, J., Kokotovich, A., Glas, D. & Grieger, K. Barriers to responsible innovation of nanotechnology applications in food and agriculture: a study of US experts and developers. NanoImpact 23, 100326 (2021). (PMID: 3555982710.1016/j.impact.2021.100326)
Kuzma, J. & Grieger, K. Community-led governance for gene-edited crops. Science 370, 916–918 (2020). (PMID: 3321426910.1126/science.abd1512)
Xu, T. et al. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 8, 9537–9548 (2020). (PMID: 10.1021/acssuschemeng.0c02696)
Wypij, M. et al. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers’ perception. Front. Chem. 10, 1106230 (2022). (PMID: 3670461610.3389/fchem.2022.1106230)
Accinelli, C. et al. Degradation of microplastic seed film-coating fragments in soil. Chemosphere 226, 645–650 (2019). (PMID: 3095944910.1016/j.chemosphere.2019.03.161)
Deng, L., Cai, L., Sun, F., Li, G. & Che, Y. Public attitudes towards microplastics: perceptions, behaviors and policy implications. Resour. Conserv. Recycl. 163, 105096 (2020). (PMID: 10.1016/j.resconrec.2020.105096)
Lian, J. et al. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 318, 128571 (2021). (PMID: 10.1016/j.jclepro.2021.128571)
Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M. & Yousefi, H. Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fibers Polym. 16, 529–536 (2015). (PMID: 10.1007/s12221-015-0529-4)
Yadav, M. et al. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 6, 1–20 (2019). (PMID: 10.1186/s40643-019-0243-y)
Sharma, V., Tiwari, P. & Mobin, S. M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 5, 8904–8924 (2017). (PMID: 3226411710.1039/C7TB02484C)
Ðorđević, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022). (PMID: 3517332710.1038/s41565-021-01051-7)
Goswami, P., Mathur, J. & Srivastava, N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 8, e09908 (2022). (PMID: 35847613928439110.1016/j.heliyon.2022.e09908)
Siddiqui, M. H. & Al-Whaibi, M. H. Role of nano-SiO 2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 21, 13–17 (2014). (PMID: 2459649510.1016/j.sjbs.2013.04.005)
Attarilar, S. et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front. Bioeng. Biotechnol. 8, 822 (2020). (PMID: 32766232738024810.3389/fbioe.2020.00822)
Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, e2000705 (2020). (PMID: 3246278610.1002/smll.202000705)
Pourzahedi, L. et al. Life cycle considerations of nano-enabled agrochemicals: are today’s tools up to the task? Environ. Sci. Nano 5, 1057–1069 (2018). (PMID: 10.1039/C7EN01166K)
Peng, B. et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6, 338–348 (2020). (PMID: 3229614310.1038/s41477-020-0625-3)
معلومات مُعتمدة: 2222373 National Science Foundation (NSF); 2133568 National Science Foundation (NSF); 2134535 National Science Foundation (NSF); 2022-67021-38078 United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service); 101041729 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
تواريخ الأحداث: Date Created: 20240606 Latest Revision: 20240606
رمز التحديث: 20240607
DOI: 10.1038/s41565-024-01667-5
PMID: 38844663
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-3395
DOI:10.1038/s41565-024-01667-5