دورية أكاديمية

Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice.

التفاصيل البيبلوغرافية
العنوان: Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice.
المؤلفون: Lau AA; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., Jin K; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia., Beard H; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., Windram T; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., Xie K; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia.; Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia., O'Brien JA; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia., Neumann D; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., King BM; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., Snel MF; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia., Trim PJ; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia., Mitrofanis J; Fonds Clinatec, Université Grenoble Alpes, Grenoble, France.; Institute of Ophthalmology, University College London, London, UK., Hemsley KM; Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia., Austin PJ; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia.
المصدر: Journal of neurochemistry [J Neurochem] 2024 Jun 07. Date of Electronic Publication: 2024 Jun 07.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
Original Publication: New York : Raven Press
مستخلص: Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm 2 /day) or 904 nm (4 J/cm 2 /day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8 + T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
(© 2024 The Author(s). Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.)
References: Ajami, B., Samusik, N., Wieghofer, P., Ho, P. P., Crotti, A., Bjornson, Z., Prinz, M., Fantl, W. J., Nolan, G. P., & Steinman, L. (2018). Single‐cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience, 21, 541–551.
Albrecht, D. S., Ahmed, S. U., Kettner, N. W., Borra, R. J. H., Cohen‐Adad, J., Deng, H., Houle, T. T., Opalacz, A., Roth, S. A., Melo, M. F. V., Chen, L., Mao, J., Hooker, J. M., Loggia, M. L., & Zhang, Y. (2018). Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain, 159, 968–977.
Allen Reish, H. E., & Standaert, D. G. (2015). Role of α‐synuclein in inducing innate and adaptive immunity in Parkinson disease. Journal of Parkinson's Disease, 5, 1–19.
Arfi, A., Richard, M., Gandolphe, C., Bonnefont‐Rousselot, D., Thérond, P., & Scherman, D. (2011). Neuroinflammatory and oxidative stress phenomena in MPS IIIA mouse model: The positive effect of long‐term aspirin treatment. Molecular Genetics and Metabolism, 103, 18–25.
Ausseil, J., Desmaris, N., Bigou, S., Attali, R., Corbineau, S., Vitry, S., Parent, M., Cheillan, D., Fuller, M., Maire, I., Vanier, M. T., & Heard, J. M. (2008). Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One, 3, e2296.
Bathini, M., Raghushaker, C. R., & Mahato, K. K. (2020). The molecular mechanisms of action of Photobiomodulation against neurodegenerative diseases: A systematic review. Cellular and Molecular Neurobiology, 42, 955–971.
Beard, H., Chidlow, G., Neumann, D., Nazri, N., Douglass, M., Trim, P. J., Snel, M. F., Casson, R. J., & Hemsley, K. M. (2020). Is the eye a window to the brain in Sanfilippo syndrome? Acta Neuropathologica Communications, 8, 194.
Beard, H., Hassiotis, S., Gai, W.‐P., Parkinson‐Lawrence, E., Hopwood, J. J., & Hemsley, K. M. (2017). Axonal dystrophy in the brain of mice with Sanfilippo syndrome. Experimental Neurology, 295, 243–255.
Bhaumik, M., Muller, V. J., Rozaklis, T., Linda, J., Dobrenis, K., Bhattacharyya, R., Wurzelmann, S., Finamore, P., Hopwood, J. J., Walkley, S. U., & Stanley, P. (1999). A mouse model for mucopolysaccharidosis type IIIA (Sanfilippo syndrome). Glycobiology, 9, 1389–1396.
Blivet, G., Meunier, J., Roman, F. J., & Touchon, J. (2018). Neuroprotective effect of a new photobiomodulation technique against Aβ25–35 peptide–induced toxicity in mice: Novel hypothesis for therapeutic approach of Alzheimer's disease suggested. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4, 54–63.
Cardoso, F. D. S., Lopes Martins, R. Á. B., & Gomes da Silva, S. (2020). Therapeutic potential of photobiomodulation in Alzheimer's disease: A systematic review. Journal of Lasers in Medical Sciences, 11, S16–S22.
Chen, H., O'Reilly, E. J., Schwarzschild, M. A., & Ascherio, A. (2008). Peripheral inflammatory biomarkers and risk of Parkinson's disease. American Journal of Epidemiology, 167, 90–95.
Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports, 13, 3391–3396.
Chengbo, M., Zhiyong, H., & Da, X. (2013). Low‐level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer's disease. The Journal of Neuroscience, 33, 13505–13517.
Chiang, S. C. C., Theorell, J., Entesarian, M., Meeths, M., Mastafa, M., al‐Herz, W., Frisk, P., Gilmour, K. C., Ifversen, M., Langenskiöld, C., Machaczka, M., Naqvi, A., Payne, J., Perez‐Martinez, A., Sabel, M., Unal, E., Unal, S., Winiarski, J., Nordenskjöld, M., … Bryceson, Y. T. (2013). Comparison of primary human cytotoxic T‐cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood, 121, 1345–1356.
Cho, G. M., Lee, S. Y., Park, J. H., Kim, M. J., Park, K. J., Choi, B. T., Shin, Y. I., Kim, N. G., & Shin, H. K. (2020). Photobiomodulation using a low‐level light‐emitting diode improves cognitive dysfunction in the 5XFAD mouse model of Alzheimer's disease. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 75(4), 631–639.
Cho, G. M., Lee, S.‐Y., Park, J. H., Kim, M. J., Park, K.‐J., Choi, B. T., Shin, Y.‐I., Kim, N. G., & Shin, H. K. (2018). Photobiomodulation using a low‐level light‐emitting diode improves cognitive dysfunction in the 5XFAD mouse model of Alzheimer's disease. The Journals of Gerontology: Series A, 75, 631–639.
Ciliberti, M. G., Albenzio, M., Inghese, C., Santillo, A., Marino, R., Sevi, A., & Caroprese, M. (2017). Peripheral blood mononuclear cell proliferation and cytokine production in sheep as affected by cortisol level and duration of stress. Journal of Dairy Science, 100, 750–756.
Corrêa, S. A., & Eales, K. L. (2012). The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. Journal of Signal Transduction, 2012, 649079.
Crawley, A. C., Gliddon, B. L., Auclair, D., Brodie, S. L., Hirte, C., King, B. M., Fuller, M., Hemsley, K. M., & Hopwood, J. J. (2006). Characterization of a C57BL/6 congenic mouse strain of mucopolysaccharidosis type IIIA. Brain Research, 1104, 1–17.
Crawley, A. C., Marshall, N., Beard, H., Hassiotis, S., Walsh, V., King, B., Hucker, N., Fuller, M., Jolly, R. D., Hopwood, J. J., & Hemsley, K. M. (2011). Enzyme replacement reduces neuropathology in MPS IIIA dogs. Neurobiology of Disease, 43, 422–434.
De Taboada, L., Yu, J., El‐Amouri, S., Gattoni‐Celli, S., Richieri, S., McCarthy, T., Streeter, J., & Kindy, M. S. (2011). Transcranial laser therapy attenuates amyloid‐β peptide neuropathology in amyloid‐β protein precursor transgenic mice. Journal of Alzheimer's Disease, 23, 521–535.
Debacq‐Chainiaux, F., Boilan, E., Dedessus Le Moutier, J., Weemaels, G., & Toussaint, O. (2010). p38(MAPK) in the senescence of human and murine fibroblasts. Advances in Experimental Medicine and Biology, 694, 126–137.
DiRosario, J., Divers, E., Wang, C., Etter, J., Charrier, A., Jukkola, P., Auer, H., Best, V., Newsom, D. L., McCarty, D. M., & Fu, H. (2009). Innate and adaptive immune activation in the brain of MPS IIIB mouse model. Journal of Neuroscience Research, 87, 978–990.
Dwyer, C. A., Scudder, S. L., Lin, Y., Dozier, L. E., Phan, D., Allen, N. J., Patrick, G. N., & Esko, J. D. (2017). Neurodevelopmental changes in excitatory synaptic structure and function in the cerebral cortex of Sanfilippo syndrome IIIA mice. Scientific Reports, 7, 46576.
Egeland, M. T., Tarczyluk‐Wells, M. M., Asmar, M. M., Adintori, E. G., Lawrence, R., Snella, E. M., Jens, J. K., Crawford, B. E., Wait, J. C. M., McCullagh, E., Pinkstaff, J., Cooper, J. D., & Ellinwood, N. M. (2020). Central nervous system pathology in preclinical MPS IIIB dogs reveals progressive changes in clinically relevant brain regions. Scientific Reports, 10, 20365.
El Massri, N., Moro, C., Torres, N., Darlot, F., Agay, D., Chabrol, C., Johnstone, D. M., Stone, J., Benabid, A.‐L., & Mitrofanis, J. (2016). Near‐infrared light treatment reduces astrogliosis in MPTP‐treated monkeys. Experimental Brain Research, 234(11), 3225–3232.
Fu, H., Meadows, A. S., Pineda, R. J., Kunkler, K. L., Truxal, K. V., McBride, K. L., Flanigan, K. M., & McCarty, D. M. (2017). Differential prevalence of antibodies against adeno‐associated virus in healthy children and patients with mucopolysaccharidosis III: Perspective for AAV‐mediated gene therapy. Human Gene Therapy. Clinical Development, 28, 187–196.
Garbuzova‐Davis, S., Mirtyl, S., Sallot, S. A., Hernandez‐Ontiveros, D. G., Haller, E., & Sanberg, P. R. (2013). Blood‐brain barrier impairment in MPS III patients. BMC Neurology, 13, 174.
Garofalo, S., Cocozza, G., Mormino, A., Bernardini, G., Russo, E., Ielpo, D., Andolina, D., Ventura, R., Martinello, K., Renzi, M., Fucile, S., Laffranchi, M., Mortari, E. P., Carsetti, R., Sciumè, G., Sozzani, S., Santoni, A., Tremblay, M. E., Ransohoff, R. M., & Limatola, C. (2023). Natural killer cells and innate lymphoid cells 1 tune anxiety‐like behavior and memory in mice via interferon‐γ and acetylcholine. Nature Communications, 14, 3103.
Hamblin, M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113–124.
Hamblin, M. R. (2017). Mechanisms and applications of the anti‐inflammatory effects of photobiomodulation. AIMS Biophysics, 4, 337–361.
Hamblin, M. R. (2019). Chapter 8 ‐ Mechanisms of photobiomodulation in the brain. In M. R. Hamblin, & Y.‐Y. Huang (Eds.), Photobiomodulation in the brain (pp. 97–110). Academic Press.
Hamblin, M. R., & Liebert, A. (2022). Photobiomodulation therapy mechanisms beyond cytochrome c oxidase. Photobiomodulation, Photomedicine, and Laser Surgery, 40, 75–77.
Hamilton, C., Hamilton, D., Nicklason, F., El Massri, N., & Mitrofanis, J. (2018). Exploring the use of transcranial photobiomodulation in Parkinson's disease patients. Neural Regeneration Research, 13, 1738–1740.
Hassiotis, S., Beard, H., Luck, A., Trim, P. J., King, B., Snel, M. F., Hopwood, J. J., & Hemsley, K. M. (2014). Disease stage determines the efficacy of treatment of a paediatric neurodegenerative disease. European Journal of Neuroscience, 39, 2139–2150.
He, Q. Q., Trim, P. J., Lau, A. A., King, B. M., Hopwood, J. J., Hemsley, K. M., Snel, M. F., & Ferro, V. (2019). Synthetic disaccharide standards enable quantitative analysis of stored heparan sulfate in MPS IIIA murine brain regions. ACS Chemical Neuroscience, 10, 3847–3858.
Hemsley, K. M., Beard, H., King, B. M., & Hopwood, J. J. (2008). Effect of high dose, repeated intra‐CSF injection of sulphamidase on neuropathology in MPS IIIA mice. Genes, Brain, and Behavior, 7, 740–753.
Hemsley, K. M., & Hopwood, J. J. (2005). Development of motor deficits in a murine model of mucopolysaccharidosis type IIIA (MPS‐IIIA). Behavioural Brain Research, 158, 191–199.
Hemsley, K. M., Luck, A. J., Crawley, A. C., Hassiotis, S., Beard, H., King, B., Rozek, T., Rozaklis, T., Fuller, M., & Hopwood, J. J. (2009). Examination of intravenous and intra‐CSF protein delivery for treatment of neurological disease. The European Journal of Neuroscience, 29, 1197–1214.
Hinwood, M., Morandini, J., Day, T. A., & Walker, F. R. (2012). Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cerebral Cortex, 22, 1442–1454.
Hocquemiller, M., Hemsley, K. M., Douglass, M. L., Tamang, S. J., Neumann, D., King, B. M., Beard, H., Trim, P. J., Winner, L. K., Lau, A. A., Snel, M. F., Gomila, C., Ausseil, J., Mei, X., Giersch, L., Plavsic, M., & Laufer, R. (2020). AAVrh10 vector corrects disease pathology in MPS IIIA mice and achieves widespread distribution of SGSH in large animal brains. Molecular Therapy—Methods & Clinical Development, 17, 174–187.
Hu, X., li, J., Fu, M., Zhao, X., & Wang, W. (2021). The JAK/STAT signaling pathway: From bench to clinic. Signal Transduction and Targeted Therapy, 6, 402.
Huang, Y. Y., Sharma, S. K., Carroll, J., & Hamblin, M. R. (2011). Biphasic dose response in low level light therapy—An update. Dose‐Response, 9, 602–618.
Iwasa, H., Han, J., & Ishikawa, F. (2003). Mitogen‐activated protein kinase p38 defines the common senescence‐signalling pathway. Genes to Cells, 8, 131–144.
Jenkins, P. A., & Carroll, J. D. (2011). How to report low‐level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomedicine and Laser Surgery, 29, 785–787.
Johnstone, D. M., el Massri, N., Moro, C., Spana, S., Wang, X. S., Torres, N., Chabrol, C., de Jaeger, X., Reinhart, F., Purushothuman, S., Benabid, A. L., Stone, J., & Mitrofanis, J. (2014). Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism ‐ an abscopal neuroprotective effect. Neuroscience, 274, 93–101.
Kenkhuis, B., Somarakis, A., Kleindouwel, L. R. T., van Roon‐Mom, W. M. C., Höllt, T., & van der Weerd, L. (2022). Co‐expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer's disease. Neurobiology of Disease, 167, 105684.
Keyes, T. J., Koladiya, A., Lo, Y.‐C., Nolan, G. P., & Davis, K. L. (2023). tidytof: A user‐friendly framework for scalable and reproducible high‐dimensional cytometry data analysis. Bioinformatics Advances, 3, vbad071.
Larbi, A., & Fulop, T. (2014). From “truly naïve” to “exhausted senescent” T cells: When markers predict functionality. Cytometry. Part A, 85, 25–35.
Lau, A. A., Crawley, A. C., Hopwood, J. J., & Hemsley, K. M. (2008). Open field locomotor activity and anxiety‐related behaviors in mucopolysaccharidosis type IIIA mice. Behavioural Brain Research, 91, 130–136.
Lau, A. A., King, B. M., Thorsen, C. L., Hassiotis, S., Beard, H., Trim, P. J., Whyte, L. S., Tamang, S. J., Duplock, S. K., Snel, M. F., Hopwood, J. J., & Hemsley, K. M. (2017). A novel conditional Sgsh knockout mouse model recapitulates phenotypic and neuropathic deficits of Sanfilippo syndrome. Journal of Inherited Metabolic Disease, 40, 715–724.
Lau, A. A., Tamang, S. J., & Hemsley, K. M. (2018). MPS‐IIIA mice acquire autistic behaviours with age. Journal of Inherited Metabolic Disease, 41, 669–677.
Liebert, A., Bicknell, B., Laakso, E. L., Heller, G., Jalilitabaei, P., Tilley, S., Mitrofanis, J., & Kiat, H. (2021). Improvements in clinical signs of Parkinson's disease using photobiomodulation: A prospective proof‐of‐concept study. BMC Neurology, 21, 256.
Liu, Y., Holdbrooks, A. T., de Sarno, P., Rowse, A. L., Yanagisawa, L. L., McFarland, B. C., Harrington, L. E., Raman, C., Sabbaj, S., Benveniste, E. N., & Qin, H. (2014). Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. Journal of Immunology, 192, 59–72.
Louveau, A., Da Mesquita, S., & Kipnis, J. (2016). Lymphatics in neurological disorders: A neuro‐Lympho‐vascular component of multiple sclerosis and Alzheimer's disease? Neuron, 91, 957–973.
Louveau, A., Plog, B. A., Antila, S., Alitalo, K., Nedergaard, M., & Kipnis, J. (2017). Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of Clinical Investigation, 127, 3210–3219.
Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., Derecki, N. C., Castle, D., Mandell, J. W., Lee, K. S., Harris, T. H., & Kipnis, J. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523, 337–341.
Lu, Y., Wang, R., Dong, Y., Tucker, D., Zhao, N., Ahmed, M. E., Zhu, L., Liu, T. C. Y., Cohen, R. M., & Zhang, Q. (2017). Low‐level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiology of Aging, 49, 165–182.
Mandolfo, O., Parker, H., & Bigger, B. (2022). Innate immunity in mucopolysaccharide diseases. International Journal of Molecular Sciences, 23, 1999.
Mavrogonatou, E., Konstantinou, A., & Kletsas, D. (2018). Long‐term exposure to TNF‐α leads human skin fibroblasts to a p38 MAPK‐ and ROS‐mediated premature senescence. Biogerontology, 19, 237–249.
Mazzitelli, J. A., Pulous, F. E., Smyth, L. C. D., Kaya, Z., Rustenhoven, J., Moskowitz, M. A., Kipnis, J., & Nahrendorf, M. (2023). Skull bone marrow channels as immune gateways to the central nervous system. Nature Neuroscience, 26, 2052–2062.
McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology, 38, 1285–1291.
Meng, C., He, Z., & Xing, D. (2013). Low‐level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer's disease. Journal of Neuroscience, 33, 13505–13517.
Moro, C., Valverde, A., Dole, M., Hoh Kam, J., Hamilton, C., Liebert, A., Bicknell, B., Benabid, A. L., Magistretti, P., & Mitrofanis, J. (2022). The effect of photobiomodulation on the brain during wakefulness and sleep. Frontiers in Neuroscience, 16, 942536.
Mount, M. P., Lira, A., Grimes, D., Smith, P. D., Faucher, S., Slack, R., Anisman, H., Hayley, S., & Park, D. S. (2007). Involvement of interferon‐gamma in microglial‐mediated loss of dopaminergic neurons. The Journal of Neuroscience, 27, 3328–3337.
O'Brien, J. A., & Austin, P. J. (2019). Effect of photobiomodulation in rescuing lipopolysaccharide‐induced dopaminergic cell loss in the male Sprague‐Dawley rat. Biomolecules, 9, 381.
O'Brien, J. A., McGuire, H. M., Shinko, D., Fazekas de St Groth, B., Russo, M. A., Bailey, D., Santarelli, D. M., Wynne, K., & Austin, P. J. (2021). T lymphocyte and monocyte subsets are dysregulated in type 1 diabetes patients with peripheral neuropathic pain. Brain, Behavior, & Immunity—Health, 15, 100283.
Ohmi, K., Greenberg, D. S., Rajavel, K. S., Ryazantsev, S., Li, H. H., & Neufeld, E. F. (2003). Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proceedings of the National Academy of Sciences of the United States of America, 100, 1902–1907.
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton‐Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., … Wyss‐Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110, 3458–3483.
Parker, H., Ellison, S. M., Holley, R. J., O'Leary, C., Liao, A., Asadi, J., Glover, E., Ghosh, A., Jones, S., Wilkinson, F. L., Brough, D., Pinteaux, E., Boutin, H., & Bigger, B. W. (2020). Haematopoietic stem cell gene therapy with IL‐1Ra rescues cognitive loss in mucopolysaccharidosis IIIA. EMBO Molecular Medicine, 12, e11185.
Perl, A., & Morel, L. (2023). Expanding scope of TEMRA in autoimmunity. eBioMedicine, 90, 104520.
Rasa, S. M. M., Annunziata, F., Krepelova, A., Nunna, S., Omrani, O., Gebert, N., Adam, L., Käppel, S., Höhn, S., Donati, G., Jurkowski, T. P., Rudolph, K. L., Ori, A., & Neri, F. (2022). Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction. Cell Reports, 39, 111017.
Russo, M. A., Fiore, N. T., van Vreden, C., Bailey, D., Santarelli, D. M., McGuire, H. M., Fazekas de St Groth, B., & Austin, P. J. (2019). Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome. Journal of Neuroinflammation, 16, 63.
Salehpour, F., & Hamblin, M. R. (2020). Photobiomodulation for Parkinson's disease in animal models: A systematic review. Biomolecules, 10, 610.
Salehpour, F., Khademi, M., & Hamblin, M. R. (2021). Photobiomodulation therapy for dementia: A systematic review of pre‐clinical and clinical studies. Journal of Alzheimer's Disease, 83, 1431–1452.
Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682.
Sensini, F., Inta, D., Palme, R., Brandwein, C., Pfeiffer, N., Riva, M. A., Gass, P., & Mallien, A. S. (2020). The impact of handling technique and handling frequency on laboratory mouse welfare is sex‐specific. Scientific Reports, 10, 17281.
Settembre, C., Fraldi, A., Jahreiss, L., Spampanato, C., Venturi, C., Medina, D., de Pablo, R., Tacchetti, C., Rubinsztein, D. C., & Ballabio, A. (2008). A block of autophagy in lysosomal storage disorders. Human Molecular Genetics, 17, 119–129.
Sharma, R. P., Rosen, C., Melbourne, J. K., Feiner, B., & Chase, K. A. (2016). Activated phosphorylated STAT1 levels as a biologically relevant immune signal in schizophrenia. Neuroimmunomodulation, 23, 224–229.
Sharma, S. K., Kharkwal, G. B., Sajo, M., Huang, Y.‐Y., De Taboada, L., McCarthy, T., & Hamblin, M. R. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers in Surgery and Medicine, 43, 851–859.
Shaw, V. E., Spana, S., Ashkan, K., Benabid, A.‐L., Stone, J., Baker, G. E., & Mitrofanis, J. (2010). Neuroprotection of midbrain dopaminergic cells in MPTP‐treated mice after near‐infrared light treatment. The Journal of Comparative Neurology, 518, 25–40.
Shen, Q., Liu, L., Gu, X., & Xing, D. (2021). Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer's disease. Aging Cell, 20, e13289.
Song, S., Zhou, F., & Chen, W. R. (2012). Low‐level laser therapy regulates microglial function through Src‐mediated signaling pathways: Implications for neurodegenerative diseases. Journal of Neuroinflammation, 9, 219.
Tao, L., Liu, Q., Zhang, F., Fu, Y., Zhu, X., Weng, X., Han, H., Huang, Y., Suo, Y., Chen, L., Gao, X., & Wei, X. (2021). Microglia modulation with 1070‐nm light attenuates Aβ burden and cognitive impairment in Alzheimer's disease mouse model. Light: Science & Applications, 10, 179.
Thunshelle, C., & Hamblin, M. R. (2016). Transcranial low‐level laser (light) therapy for brain injury. Photomedicine and Laser Surgery, 34, 587–598.
Valstar, M. J., Ruijter, G. J., van Diggelen, O. P., Poorthuis, B. J., & Wijburg, F. A. (2008). Sanfilippo syndrome: A mini‐review. Journal of Inherited Metabolic Disease, 31, 240–252.
Villani, G. R., Di Domenico, C., Musella, A., Cecere, F., Di Napoli, D., & Di Natale, P. (2009). Mucopolysaccharidosis IIIB: Oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Research, 1279, 99–108.
Villani, G. R. D., Gargiulo, N., Faraonio, R., Castaldo, S., Gonzalez y Reyero, E., & Di Natale, P. (2007). Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. Journal of Neuroscience Research, 85, 612–622.
Wang, L., Jacques, S. L., & Zheng, L. (1995). MCML—Monte Carlo modeling of light transport in multi‐layered tissues. Computer Methods and Programs in Biomedicine, 47, 131–146.
Wang, X., Li, X., Zuo, X., Liang, Z., Ding, T., Li, K., Ma, Y., Li, P., Zhu, Z., Ju, C., Zhang, Z., Song, Z., Quan, H., Zhang, J., Hu, X., & Wang, Z. (2021). Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2‐STAT3 crosstalk after spinal cord injury in male rats. Journal of Neuroinflammation, 18, 256.
Winner, L. K., Beard, H., Hassiotis, S., Lau, A. A., Luck, A. J., Hopwood, J. J., & Hemsley, K. M. (2016). A preclinical study evaluating AAVrh10‐based gene therapy for Sanfilippo syndrome. Human Gene Therapy, 27, 363–375.
Winner, L. K., Marshall, N. R., Jolly, R. D., Trim, P. J., Duplock, S. K., Snel, M. F., & Hemsley, K. M. (2019). Evaluation of disease lesions in the developing canine MPS IIIA brain. In E. Morava, M. Baumgartner, M. Patterson, S. Rahman, J. Zschocke, & V. Peters (Eds.), JIMD reports (Vol. 43, pp. 91–101). Springer.
Wu, Q., Xuan, W., Ando, T., Xu, T., Huang, L., Huang, Y. Y., Dai, T., Dhital, S., Sharma, S. K., Whalen, M. J., & Hamblin, M. R. (2012). Low‐level laser therapy for closed‐head traumatic brain injury in mice: Effect of different wavelengths. Lasers in Surgery and Medicine, 44, 218–226.
Wu, X., Shen, Q., Zhang, Z., Zhang, D., Gu, Y., & Xing, D. (2021). Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer's disease model. Stem Cell Research & Therapy, 12, 345.
Xie, K., El Khoury, H., Mitrofanis, J., & Austin, P. J. (2022). A systematic review of the effect of photobiomodulation on the neuroinflammatory response in animal models of neurodegenerative diseases. Reviews in the Neurosciences, 34, 459–481.
Yang, L., Tucker, D., Dong, Y., Wu, C., Lu, Y., Li, Y., Zhang, J., Liu, T. C.‐Y., & Zhang, Q. (2018). Photobiomodulation therapy promotes neurogenesis by improving post‐stroke local microenvironment and stimulating neuroprogenitor cells. Experimental Neurology, 299, 86–96.
Yang, L., Wu, C., Parker, E., Li, Y., Dong, Y., Tucker, L., Brann, D. W., Lin, H. W., & Zhang, Q. (2022). Non‐invasive photobiomodulation treatment in an Alzheimer disease‐like transgenic rat model. Theranostics, 12, 2205–2231.
Yang, X., Askarova, S., Sheng, W., Chen, J. K., Sun, A. Y., Sun, G. Y., Yao, G., & Lee, J. C. (2010). Low energy laser light (632.8 nm) suppresses amyloid‐β peptide‐induced oxidative and inflammatory responses in astrocytes. Neuroscience, 171, 859–868.
Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15, 11–18.
معلومات مُعتمدة: Cure Sanfilippo Foundation; Sanfilippo Children's Foundation; Neil and Norma Hill Foundation; Save Mickey Foundation
فهرسة مساهمة: Keywords: Sanfilippo syndrome; inflammation; microglia; natural killer cells; photobiomodulation
تواريخ الأحداث: Date Created: 20240607 Latest Revision: 20240607
رمز التحديث: 20240608
DOI: 10.1111/jnc.16145
PMID: 38849324
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-4159
DOI:10.1111/jnc.16145