دورية أكاديمية

Inhibition of Extracellular Signal-Regulated Kinase Activity Improves Cognitive Function in Mice Subjected to Myocardial Infarction.

التفاصيل البيبلوغرافية
العنوان: Inhibition of Extracellular Signal-Regulated Kinase Activity Improves Cognitive Function in Mice Subjected to Myocardial Infarction.
المؤلفون: Yin Y; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, No. 241 West Huaihai Rd., Shanghai, China., Li X; School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, China., Zhang X; School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China., Yuan X; School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China., You X; School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China. yoyo1976@shu.edu.cn., Wu J; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, No. 241 West Huaihai Rd., Shanghai, China. wu_jingxiang@sjtu.edu.cn.; School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, China. wu_jingxiang@sjtu.edu.cn.
المصدر: Cardiovascular toxicology [Cardiovasc Toxicol] 2024 Aug; Vol. 24 (8), pp. 766-775. Date of Electronic Publication: 2024 Jun 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2001-
مواضيع طبية MeSH: Myocardial Infarction*/enzymology , Myocardial Infarction*/physiopathology , Myocardial Infarction*/pathology , Myocardial Infarction*/drug therapy , Cognition*/drug effects , Nitriles*/pharmacology , Disease Models, Animal* , Butadienes*/pharmacology , Extracellular Signal-Regulated MAP Kinases*/metabolism , Extracellular Signal-Regulated MAP Kinases*/antagonists & inhibitors , Behavior, Animal*/drug effects , Mice, Inbred C57BL* , STAT1 Transcription Factor*/metabolism , STAT1 Transcription Factor*/antagonists & inhibitors, Animals ; Male ; Protein Kinase Inhibitors/pharmacology ; Cognitive Dysfunction/drug therapy ; Cognitive Dysfunction/physiopathology ; Cognitive Dysfunction/etiology ; Cognitive Dysfunction/enzymology ; Cognitive Dysfunction/prevention & control ; Signal Transduction/drug effects ; Elevated Plus Maze Test ; Open Field Test/drug effects ; Mice
مستخلص: Cognitive impairment is a commonly observed complication following myocardial infarction; however, the underlying mechanisms are still not well understood. The most recent research suggests that extracellular signal-regulated kinase (ERK) plays a critical role in the development and occurrence of cognitive dysfunction-related diseases. This study aims to explore whether the ERK inhibitor U0126 targets the ERK/Signal Transducer and Activator of Transcription 1 (STAT1) pathway to ameliorate cognitive impairment after myocardial infarction. To establish a mouse model of myocardial infarction, we utilized various techniques including Echocardiography, Hematoxylin-eosin (HE) staining, Elisa, Open field test, Elevated plus maze test, and Western blot analysis to assess mouse cardiac function, cognitive function, and signal transduction pathways. For further investigation into the mechanisms of cognitive function and signal transduction, we administered the ERK inhibitor U0126 via intraperitoneal injection. Reduced total distance and activity range were observed in mice subjected to myocardial infarction during the open field test, along with decreased exploration of the open arms in the elevated plus maze test. However, U0126 treatment exhibited a significant improvement in cognitive decline, indicating a protective effect through the inhibition of the ERK/STAT1 signaling pathway. Hence, this study highlights the involvement of the ERK/STAT1 pathway in regulating cognitive dysfunction following myocardial infarction and establishes U0126 as a promising therapeutic target.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Li, Z., Liu, B., Ge, W., Zhang, W., Gu, C., & Liu, J. (2019). Effect of simultaneous surgical treatment of severe coronary artery disease and lung cancer. The Journal of International Medical Research, 47(2), 591–599. https://doi.org/10.1177/0300060518805297. (PMID: 10.1177/030006051880529730318969)
Cen, W., Chen, Z., Gu, N., & Hoppe, R. (2017). Prevention of AMI induced ventricular remodeling: Inhibitory effects of heart-protecting musk pill on IL-6 and TNF-alpha. Evidence-Based Complementary and Alternative Medicine: ECAM, 2017, 3217395. https://doi.org/10.1155/2017/3217395. (PMID: 10.1155/2017/321739528373886)
Stewart, R. A. H., Held, C., Krug-Gourley, S., Waterworth, D., Stebbins, A., & Chiswell, K. (2019). Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease. Journal of the American Heart Association, 8(7), e010641. https://doi.org/10.1161/JAHA.118.010641. (PMID: 10.1161/JAHA.118.010641308979996509727)
Romero, J. R., Beiser, A., Seshadri, S., Benjamin, E. J., Polak, J. F., & Vasan, R. S. (2009). Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: The Framingham study. Stroke, 40(5), 1590–1596. https://doi.org/10.1161/STROKEAHA.108.535245. (PMID: 10.1161/STROKEAHA.108.535245192650542705324)
Hayward, G. C., LeBlanc, P. J., Emter, C. A., Nyarko, J. N. K., Mousseau, D. D., & MacPherson, R. E. K. (2019). Female sex hormones and cardiac pressure overload independently contribute to the cardiogenic dementia profile in Yucatan miniature swine. Frontiers in cardiovascular medicine, 6, 129. https://doi.org/10.3389/fcvm.2019.00129. (PMID: 10.3389/fcvm.2019.00129315522736746895)
Islam MR, Lbik D, Sakib MS, Maximilian Hofmann R, Berulava T, Jiménez Mausbach M. 2021. Epigenetic gene expression links heart failure to memory impairment. EMBO Molecular Medicine 13(3). e11900. https://doi.org/10.15252/emmm.201911900 .
Berga, S. L., & Loucks, T. L. (2006). Use of cognitive behavior therapy for functional hypothalamic amenorrhea. Annals of the New York Academy of Sciences, 1092, 114–129. https://doi.org/10.1196/annals.1365.010. (PMID: 10.1196/annals.1365.01017308138)
Mene-Afejuku, T. O., Pernia, M., Ibebuogu, U. N., Chaudhari, S., Mushiyev, S., & Visco, F. (2019). Heart failure and cognitive impairment: Clinical relevance and therapeutic considerations. Current cardiology reviews, 15(4), 291–303. https://doi.org/10.2174/1573403X15666190313112841. (PMID: 10.2174/1573403X15666190313112841314565128142355)
Kang, Y. M., Ma, Y., Elks, C., Zheng, J. P., Yang, Z. M., & Francis, J. (2008). Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: Role of nuclear factor-kappaB. Cardiovascular Research, 79(4), 671–678. https://doi.org/10.1093/cvr/cvn119. (PMID: 10.1093/cvr/cvn119184693382732061)
Patel, K. P. (2000). Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Failure Reviews, 5(1), 73–86. https://doi.org/10.1023/A:1009850224802. (PMID: 10.1023/A:100985022480216228917)
Herman, J. P., & Tasker, J. G. (2016). Paraventricular hypothalamic mechanisms of chronic stress adaptation. Frontiers in Endocrinology, 7, 137. https://doi.org/10.3389/fendo.2016.00137. (PMID: 10.3389/fendo.2016.00137278434375086584)
Herman, J. P. (1995). In situ hybridization analysis of vasopressin gene transcription in the paraventricular and supraoptic nuclei of the rat: Regulation by stress and glucocorticoids. The Journal of comparative neurology, 363(1), 15–27. https://doi.org/10.1002/cne.903630103. (PMID: 10.1002/cne.9036301038682934)
Ueta, Y., Dayanithi, G., & Fujihara, H. (2011). Hypothalamic vasopressin response to stress and various physiological stimuli: Visualization in transgenic animal models. Hormones and Behavior, 59(2), 221–226. https://doi.org/10.1016/j.yhbeh.2010.12.007. (PMID: 10.1016/j.yhbeh.2010.12.00721185297)
Farré-Alins, V., Palomino-Antolín, A., Narros-Fernández, P., Lopez-Rodriguez, A. B., Decouty-Perez, C., & Muñoz-Montero, A. (2021). Serum amyloid A1/Toll-Like receptor-4 axis, an important link between inflammation and outcome of TBI patients. Biomedicines. https://doi.org/10.3390/biomedicines9060599. (PMID: 10.3390/biomedicines9060599340705338227125)
Biancardi VC, Son SJ, Sonner PM, Zheng H, Patel KP, Stern JE. 2011. Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats. Hypertension (Dallas, Tex.: 1979) 58(3). 454–63. https://doi.org/10.1161/HYPERTENSIONAHA.111.175810 .
Liu, P., Tu, J., Wang, W., Li, Z., Li, Y., & Yu, X. (2022). Effects of mechanical stress stimulation on function and expression mechanism of osteoblasts. Frontiers in Bioengineering and Biotechnology, 10, 830722. https://doi.org/10.3389/fbioe.2022.830722. (PMID: 10.3389/fbioe.2022.830722352521388893233)
Palenski, T. L., Sorenson, C. M., & Sheibani, N. (2013). Inflammatory cytokine-specific alterations in retinal endothelial cell function. Microvascular Research, 89, 57–69. https://doi.org/10.1016/j.mvr.2013.06.007. (PMID: 10.1016/j.mvr.2013.06.007238067813764503)
Kraeuter, A. K., Guest, P. C., & Sarnyai, Z. (2019). The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods in molecular biology. https://doi.org/10.1007/978-1-4939-8994-2_4. (PMID: 10.1007/978-1-4939-8994-2_430535688)
Dutzmann, J., Daniel, J. M., Bauersachs, J., Hilfiker-Kleiner, D., & Sedding, D. G. (2015). Emerging translational approaches to target STAT3 signalling and its impact on vascular disease. Cardiovascular Research, 106(3), 365–374. https://doi.org/10.1093/cvr/cvv103. (PMID: 10.1093/cvr/cvv103257846944431663)
Fang, Y., Zhong, L., Lin, M., Zhou, X., Jing, H., & Ying, M. (2013). MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS ONE, 8(6), e66915. https://doi.org/10.1371/journal.pone.0066915. (PMID: 10.1371/journal.pone.0066915238255853692534)
Zhou, X. M., Zhang, X., Zhang, X. S., Zhuang, Z., Li, W., & Sun, Q. (2014). SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. Journal of Neuroscience Research, 92(6), 714–722. https://doi.org/10.1002/jnr.23359. (PMID: 10.1002/jnr.2335924482345)
Lotfi-Tokaldany M, Sadeghian S, Mosavi SA, Omidi N, Rahnemoun Z, Kazzazi EH. 2022. Association between cognitive representation of illness and the outcome of patients with premature coronary artery disease. Journal of Psychosomatic Research 162(111019. https://doi.org/10.1016/j.jpsychores.2022.111019 .
Schievink, S. H. J., van Boxtel, M. P. J., Deckers, K., van Oostenbrugge, R. J., Verhey, F. R. J., & Köhler, S. (2017). Cognitive changes in prevalent and incident cardiovascular disease: A 12-year follow-up in the Maastricht Aging Study (MAAS). European Heart Journal. https://doi.org/10.1093/eurheartj/ehx365. (PMID: 10.1093/eurheartj/ehx365)
Liang, X., Huang, Y., & Han, X. (2021). Associations between coronary heart disease and risk of cognitive impairment: A meta-analysis. Brain and Behavior, 11(5), e02108. https://doi.org/10.1002/brb3.2108. (PMID: 10.1002/brb3.2108337425628119850)
Michniewicz, E., Mlodawska, E., Lopatowska, P., Tomaszuk-Kazberuk, A., & Malyszko, J. (2018). Patients with atrial fibrillation and coronary artery disease—Double trouble. Advances in Medical Sciences, 63(1), 30–35. https://doi.org/10.1016/j.advms.2017.06.005. (PMID: 10.1016/j.advms.2017.06.00528818746)
Kumar, R., Yadav, S. K., Palomares, J. A., Park, B., Joshi, S. H., & Ogren, J. A. (2015). Reduced regional brain cortical thickness in patients with heart failure. PLoS ONE, 10(5), e0126595. https://doi.org/10.1371/journal.pone.0126595. (PMID: 10.1371/journal.pone.0126595259621644427362)
Roy, B., Woo, M. A., Wang, D. J. J., Fonarow, G. C., Harper, R. M., & Kumar, R. (2017). Reduced regional cerebral blood flow in patients with heart failure. European Journal of Heart Failure, 19(10), 1294–1302. https://doi.org/10.1002/ejhf.874. (PMID: 10.1002/ejhf.87428560737)
Jefferson, A. L., Holland, C. M., Tate, D. F., Csapo, I., Poppas, A., & Cohen, R. A. (2011). Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output. Neurobiology of Aging, 32(1), 133–139. https://doi.org/10.1016/j.neurobiolaging.2009.01.011. (PMID: 10.1016/j.neurobiolaging.2009.01.01119269713)
Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2017). “I Am I and My Bacterial Circumstances”: Linking gut microbiome, neurodevelopment, and depression. Frontiers in Psychiatry, 8, 153. https://doi.org/10.3389/fpsyt.2017.00153. (PMID: 10.3389/fpsyt.2017.00153288786965572414)
Xu, Q., Liu, T., Chen, S., Gao, Y., Wang, J., & Qiao, L. (2013). Correlation between the cumulative analgesic effect of electroacupuncture intervention and synaptic plasticity of hypothalamic paraventricular nucleus neurons in rats with sciatica. Neural Regeneration Research, 8(3), 218–225. https://doi.org/10.3969/j.issn.1673-5374.2013.03.003. (PMID: 10.3969/j.issn.1673-5374.2013.03.003252065914107526)
Pérez, C. A., Stanley, S. A., Wysocki, R. W., Havranova, J., Ahrens-Nicklas, R., & Onyimba, F. (2011). Molecular annotation of integrative feeding neural circuits. Cell Metabolism, 13(2), 222–232. https://doi.org/10.1016/j.cmet.2010.12.013. (PMID: 10.1016/j.cmet.2010.12.013212849893286830)
Cheng, J., Zhang, J., Lu, C., & Wang, L. (2012). Using optogenetics to translate the “inflammatory dialogue” between heart and brain in the context of stress. Neuroscience Bulletin, 28(4), 435–448. https://doi.org/10.1007/s12264-012-1246-2. (PMID: 10.1007/s12264-012-1246-2228330415560261)
Han, C., Qian, X., Ren, X., Zhang, S., Hu, L., & Li, J. (2022). Inhibition of cGAS in paraventricular nucleus attenuates hypertensive heart injury via regulating microglial autophagy. Molecular Neurobiology, 59(11), 7006–7024. https://doi.org/10.1007/s12035-022-02994-1. (PMID: 10.1007/s12035-022-02994-1360701209450841)
Zhang, L., Li, G., Tao, S., Xia, P., Chaudhry, N., & Kaura, S. (2022). κGinkgo biloba extract reduces cardiac and brain inflammation in rats fed a HFD and exposed to chronic mental stress through NF-B inhibition. Mediators of Inflammation, 2022, 2408598. https://doi.org/10.1155/2022/2408598. (PMID: 10.1155/2022/2408598356777359168192)
Pyner, S. (2014). The paraventricular nucleus and heart failure. Experimental Physiology, 99(2), 332–339. https://doi.org/10.1113/expphysiol.2013.072678. (PMID: 10.1113/expphysiol.2013.07267824317407)
معلومات مُعتمدة: 82071233 National Natural Science Foundation of China; SHDC2020CR4063 Shanghai Shen Kang Hospital Development Center Project
فهرسة مساهمة: Keywords: Animal model; Behavioral experiment; Cardiovascular disease; Extracesllular signal-regulated kinase; U0126
المشرفين على المادة: 0 (U 0126)
0 (Nitriles)
0 (Butadienes)
EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases)
0 (STAT1 Transcription Factor)
0 (Stat1 protein, mouse)
0 (Protein Kinase Inhibitors)
تواريخ الأحداث: Date Created: 20240608 Date Completed: 20240805 Latest Revision: 20240805
رمز التحديث: 20240806
DOI: 10.1007/s12012-024-09877-y
PMID: 38850470
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0259
DOI:10.1007/s12012-024-09877-y