دورية أكاديمية

Rerouting cardiovascular management following gastric bypass surgery: Dose optimization of carvedilol using population-based analysis.

التفاصيل البيبلوغرافية
العنوان: Rerouting cardiovascular management following gastric bypass surgery: Dose optimization of carvedilol using population-based analysis.
المؤلفون: Yamamoto PA; Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA.; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., Vozmediano V; Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA., Cristofoletti R; Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA., Jiang J; Cancer Genetics Research Complex, College of Pharmacy, University of Florida, Gainesville, FL, USA., Schmittgen TD; Cancer Genetics Research Complex, College of Pharmacy, University of Florida, Gainesville, FL, USA., de Gaitani CM; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., Kemp R; School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., Sankarankutty AK; School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., Dos Santos JS; School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., Salgado Junior W; School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil., de Moraes NV; Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA.
المصدر: British journal of clinical pharmacology [Br J Clin Pharmacol] 2024 Sep; Vol. 90 (9), pp. 2223-2235. Date of Electronic Publication: 2024 Jun 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 7503323 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2125 (Electronic) Linking ISSN: 03065251 NLM ISO Abbreviation: Br J Clin Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley-Blackwell
Original Publication: London, Macmillan Journals Ltd.
مواضيع طبية MeSH: Carvedilol*/administration & dosage , Carvedilol*/pharmacokinetics , Gastric Bypass*/adverse effects , Models, Biological* , Propanolamines*/pharmacokinetics , Propanolamines*/administration & dosage , Carbazoles*/administration & dosage , Carbazoles*/pharmacokinetics, Humans ; Male ; Female ; Adult ; Middle Aged ; Multidrug Resistance-Associated Protein 2 ; Adrenergic beta-Antagonists/pharmacokinetics ; Adrenergic beta-Antagonists/administration & dosage ; Dose-Response Relationship, Drug ; Biological Availability ; Multidrug Resistance-Associated Proteins/metabolism ; Multidrug Resistance-Associated Proteins/genetics ; Obesity/surgery ; Heart Rate/drug effects ; Administration, Oral ; Aged
مستخلص: Aims: A population-based pharmacokinetic (PK) modeling approach (PopPK) was used to investigate the impact of Roux-en-Y gastric bypass (RYGB) on the PK of (R)- and (S)-carvedilol. We aimed to optimize carvedilol dosing for these patients utilizing a pharmacokinetic/pharmacodynamic (PK/PD) link model.
Methods: PopPK models were developed utilizing data from 52 subjects, including nonobese, obese, and post- RYGB patients who received rac- carvedilol orally. Covariate analysis included anthropometric and laboratory data, history of RYGB surgery, CYP2D6 and CYP3A4 in vivo activity, and relative intestinal abundance of major drug- metabolizing enzymes and transporters. A direct effect inhibitory E max pharmacodynamic model was linked to the PK model of (S)- carvedilol to simulate the changes in exercise- induced heart rate.
Results: A 2-compartmental model with linear elimination and parallel first-order absorptions best described (S)-carvedilol PK. RYGB led to a twofold reduction in relative oral bioavailability compared to nonoperated subjects, along with delayed absorption of both enantiomers. The intestinal ABCC2 mRNA expression increases the time to reach the maximum plasma concentration. The reduced exposure (AUC) of (S)-carvedilol post-RYGB corresponded to a 33% decrease in the predicted area under the effect curve (AUEC) for the 24-hour β-blocker response. Simulation results suggested that a 50-mg daily dose in post-RYGB patients achieved comparable AUC and AUEC to 25-mg dose in nonoperated subjects.
Conclusion: Integrated PK/PD modeling indicated that standard dosage regimens for nonoperated subjects do not provide equivalent β-blocking activity in RYGB patients. This study highlights the importance of personalized dosing strategies to attain desired therapeutic outcomes in this patient cohort.
(© 2024 British Pharmacological Society.)
References: Centers for Disease Control and Prevention. Adult obesity facts. Published online May 17, 2022. Accessed January 5, 2024. https://www.cdc.gov/obesity/data/adult.html.
Shen J, Moore KT, Shukla S, Yeo KR, Venkatakrishnan K, ACCP Public Policy Committee. Inclusion of obese participants in drug development: reflections on the current landscape and a call for action. J Clin Pharmacol. 2024;64(1):13‐18. doi:10.1002/jcph.2377.
Salminen P, Grönroos S, Helmiö M, et al. Effect of laparoscopic sleeve gastrectomy vs roux‐en‐Y gastric bypass on weight loss, comorbidities, and reflux at 10 years in adult patients with obesity: the SLEEVEPASS randomized clinical trial. JAMA Surg. 2022;157(8):656‐666. doi:10.1001/jamasurg.2022.2229.
Alghamdi S, Mirghani H, Alhazmi K, et al. Roux‐en‐Y gastric bypass and laparoscopic sleeve gastrectomy effects on obesity comorbidities: a systematic review and meta‐analysis. Front Surg. 2022;9:953804. doi:10.3389/fsurg.2022.953804.
Murphy R, Plank LD, Clarke MG, et al. Effect of banded roux‐en‐Y gastric bypass versus sleeve gastrectomy on diabetes remission at 5 years among patients with obesity and type 2 diabetes: a blinded randomized clinical trial. Diabetes Care. 2022;45(7):1503‐1511. doi:10.2337/dc21‐2498.
American society for metabolic and bariatric surgery. Estimate of bariatric surgery numbers, 2011–2020. Accessed May 30, 2023. https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers.
Edwards A, Ensom MHH. Pharmacokinetic effects of bariatric surgery. Ann Pharmacother. 2012;46(1):130‐136. doi:10.1345/aph.1Q414.
Kral JG, Näslund E. Surgical treatment of obesity. Nat Clin Pract Endocrinol Metab. 2007;3(8):574‐583. doi:10.1038/ncpendmet0563.
Steenackers N, Vanuytsel T, Augustijns P, et al. Adaptations in gastrointestinal physiology after sleeve gastrectomy and roux‐en‐Y gastric bypass. Lancet Gastroenterol Hepatol. 2021;6(3):225‐237. doi:10.1016/S2468‐1253(20)30302‐2.
Porat D, Vaynshtein J, Gibori R, et al. Stomach pH before vs. after different bariatric surgery procedures: clinical implications for drug delivery. Eur J Pharm Biopharm. 2021;160:152‐157. doi:10.1016/j.ejpb.2021.01.016.
Steenackers N, Vanuytsel T, Augustijns P, et al. Effect of sleeve gastrectomy and roux‐en‐Y gastric bypass on gastrointestinal physiology. Eur J Pharm Biopharm. 2023;183:92‐101. doi:10.1016/j.ejpb.2022.12.018.
Ladebo L, Pedersen PV, Pacyk GJ, et al. Gastrointestinal pH, motility patterns, and transit times after roux‐en‐Y gastric bypass. Obes Surg. 2021;31(6):2632‐2640. doi:10.1007/s11695‐021‐05308‐x.
Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152‐163. doi:10.1016/j.ejps.2014.01.009.
Hamed R, Awadallah A, Sunoqrot S, et al. pH‐dependent solubility and dissolution behavior of carvedilol‐‐case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;17(2):418‐426. doi:10.1208/s12249‐015‐0365‐2.
Incecayir T. The effects of surfactants on the solubility and dissolution profiles of a poorly water‐soluble basic drug, carvedilol. Pharmacoeconomics. 2015;70(12):784‐790.
Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet. 1994;26(5):335‐346. doi:10.2165/00003088‐199426050‐00002.
Garrison KL, Sahin S, Benet LZ. Few drugs display Flip‐flop pharmacokinetics and these are primarily associated with classes 3 and 4 of the BDDCS. J Pharm Sci. 2015;104(9):3229‐3235. doi:10.1002/jps.24505.
Neugebauer G, Akpan W, Kaufmann B, Reiff K. Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol. 1990;38(Suppl 2):S108‐S111. doi:10.1007/BF01409476.
Ishida K, Taira S, Morishita H, Kayano Y, Taguchi M, Hashimoto Y. Stereoselective oxidation and glucuronidation of carvedilol in human liver and intestinal microsomes. Biol Pharm Bull. 2008;31(6):1297‐1300. doi:10.1248/bpb.31.1297.
Takekuma Y, Takenaka T, Yamazaki K, Ueno K, Sugawara M. Stereoselective metabolism of racemic carvedilol by UGT1A1 and UGT2B7, and effects of mutation of these enzymes on glucuronidation activity. Biol Pharm Bull. 2007;30(11):2146‐2153. doi:10.1248/bpb.30.2146.
Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)‐ and S(−)‐carvedilol. Drug Metab Dispos. 1997;25(8):970‐977.
Iwaki M, Niwa T, Bandoh S, et al. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol. Drug Metab Pharmacokinet. 2016;31(6):425‐432. doi:10.1016/j.dmpk.2016.08.007.
Neugebauer G, Akpan W, von Möllendorff E, Neubert P, Reiff K. Pharmacokinetics and disposition of carvedilol in humans. J Cardiovasc Pharmacol. 1987;10(Suppl 11):S85‐S88. doi:10.1097/00005344‐198710111‐00015.
Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating β‐blockers. J Clin Hypertens. 2011;13(1):52‐59. doi:10.1111/j.1751‐7176.2010.00386.x.
GlaxoSmithKline (GSK). COREG (carvedilol). Published online September 2017. Accessed April 28, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020297s038lbl.pdf.
Schiavon CA, Bhatt DL, Ikeoka D, et al. Three‐year outcomes of bariatric surgery in patients with obesity and hypertension : a randomized clinical trial. Ann Intern Med. 2020;173(9):685‐693. doi:10.7326/M19‐3781.
Hughes D, Aminian A, Tu C, et al. Impact of bariatric surgery on left ventricular structure and function. J am Heart Assoc. 2024;13(1):e031505. doi:10.1161/JAHA.123.031505.
Yamamoto PA, Cristofoletti R, Vozmediano V, et al. Effect of roux‐En‐Y gastric bypass in the pharmacokinetics of (R)‐carvedilol and (S)‐carvedilol. J Clin Pharmacol. 2023;63(7):838‐847. doi:10.1002/jcph.2221.
Pai MP. Drug dosing based on weight and body surface area: mathematical assumptions and limitations in obese adults. Pharmacotherapy. 2012;32(9):856‐868. doi:10.1002/j.1875‐9114.2012.01108.x.
Green B, Duffull S. Caution when lean body weight is used as a size descriptor for obese subjects. Clin Pharmacol Ther. 2002;72(6):a129306. doi:10.1067/mcp.2002.129306.
Inker LA, Eneanya ND, Coresh J, et al. New creatinine‐ and cystatin C‐based equations to estimate GFR without race. N Engl J Med. 2021;385(19):1737‐1749. doi:10.1056/NEJMoa2102953.
Pavan M, Yamamoto P, Moreira da Silva R, et al. Chemometric optimization of salting‐out assisted liquid‐liquid extraction (SALLE) combined with LC‐MS/MS for the analysis of carvedilol enantiomers in human plasma: application to clinical pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1205:123338. doi:10.1016/j.jchromb.2022.123338.
Principi N, Petropulacos K, Esposito S. Impact of pharmacogenomics in clinical practice. Pharm Basel Switz. 2023;16(11):1596. doi:10.3390/ph16111596.
Parker BM, Rogers SL, Lymperopoulos A. Clinical pharmacogenomics of carvedilol: the stereo‐selective metabolism angle. Pharmacogenomics. 2018;19(14):1089‐1093. doi:10.2217/pgs‐2018‐0115.
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103‐141. doi:10.1016/j.pharmthera.2012.12.007.
McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF. Metoprolol metabolism and debrisoquine oxidation polymorphism‐‐population and family studies. Br J Clin Pharmacol. 1985;20(6):555‐566. doi:10.1111/j.1365‐2125.1985.tb05112.x.
Neves DV, Lanchote VL, de Souza L, et al. Metoprolol oxidation polymorphism in Brazilian elderly cardiac patients. J Pharm Pharmacol. 2013;65(9):1347‐1353. doi:10.1111/jphp.12109.
Sohn DR, Shin SG, Park CW, Kusaka M, Chiba K, Ishizaki T. Metoprolol oxidation polymorphism in a Korean population: comparison with native Japanese and Chinese populations. Br J Clin Pharmacol. 1991;32(4):504‐507. doi:10.1111/j.1365‐2125.1991.tb03939.x.
Galetin A, Ito K, Hallifax D, Houston JB. CYP3A4 substrate selection and substitution in the prediction of potential drug‐drug interactions. J Pharmacol Exp Ther. 2005;314(1):180‐190. doi:10.1124/jpet.104.082826.
Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 2010;38(6):981‐987. doi:10.1124/dmd.110.032094.
Jabor VAP, Coelho EB, Dos Santos NAG, Bonato PS, Lanchote VL. A highly sensitive LC‐MS‐MS assay for analysis of midazolam and its major metabolite in human plasma: applications to drug metabolism. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;822(1–2):27‐32. doi:10.1016/j.jchromb.2005.05.011.
Yang J, Patel M, Nikanjam M, et al. Midazolam single time point concentrations to estimate exposure and cytochrome P450 (CYP) 3A constitutive activity utilizing limited sampling strategy with a population pharmacokinetic approach. J Clin Pharmacol. 2018;58(9):1205‐1213. doi:10.1002/jcph.1125.
Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS j. 2011;13(4):519‐547. doi:10.1208/s12248‐011‐9290‐9.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402‐408. doi:10.1006/meth.2001.1262.
Mould D, Upton R. Basic concepts in population modeling, simulation, and model‐based drug development—part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):38. doi:10.1038/psp.2013.14.
Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model‐based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):e6. doi:10.1038/psp.2012.4.
Tenero DM, Henderson LS, Campanile AM, Baidoo CA, Boyle D. Development of a pharmacokinetic/pharmacodynamic model for carvedilol to predict β1‐blockade in patients with congestive heart failure. Am J Cardiol. 2006;98(7A):27L‐31L. doi:10.1016/j.amjcard.2006.07.016.
Fujimaki M, Hakusui H. Studies on the metabolic fate of carvedilol (III) biliary excretion and enterohepatic circulation in rats. Yakubutsu Dotai. 1989;4(6):667‐671. doi:10.2133/dmpk.4.667.
Carlson W, Oberg K. Clinical pharmacology of carvedilol. J Cardiovasc Pharmacol Ther. 1999;4(4):205‐218. doi:10.1177/107424849900400402.
Okour M, Brundage RC. Modeling enterohepatic circulation. Curr Pharmacol Rep. 2017;3(5):301‐313. doi:10.1007/s40495‐017‐0096‐z.
de Mey C, Breithaupt K, Schloos J, Neugebauer G, Palm D, Belz GG. Dose‐effect and pharmacokinetic‐pharmacodynamic relationships of the beta 1‐adrenergic receptor blocking properties of various doses of carvedilol in healthy humans. Clin Pharmacol Ther. 1994;55(3):329‐337. doi:10.1038/clpt.1994.34.
Gehr TWB, Tenero DM, Boyle DA, Qian Y, Sica DA, Shusterman NH. The pharmacokinetics of carvedilol and its metabolites after single and multiple dose oral administration in patients with hypertension and renal insufficiency. Eur J Clin Pharmacol. 1999;55(4):269‐277. doi:10.1007/s002280050628.
Tenero DM, Henderson LS, Baidoo CA, et al. Pharmacokinetic properties of a new controlled‐release formulation of carvedilol. Am J Cardiol. 2006;98(7A):5L‐16L. doi:10.1016/j.amjcard.2006.07.014.
Marier JF, Teuscher N, Mouksassi MS. Evaluation of covariate effects using forest plots and introduction to the coveffectsplot R package. CPT Pharmacometrics Syst Pharmacol. 2022;11(10):1283‐1293. doi:10.1002/psp4.12829.
Alexander SPH, Fabbro D, Kelly E, et al. The concise guide to PHARMACOLOGY 2023/24: enzymes. Br J Pharmacol. 2023;180(S2):S289‐S373. doi:10.1111/bph.16181.
Alexander SPH, Fabbro D, Kelly E, et al. The concise guide to PHARMACOLOGY 2023/24: transporters. Br J Pharmacol. 2023;180(S2):S374‐S469. doi:10.1111/bph.16182.
Fujimaki M, Murakoshi Y, Hakusui H. Assay and disposition of carvedilol enantiomers in humans and monkeys: evidence of stereoselective presystemic metabolism. J Pharm Sci. 1990;79(7):568‐572. doi:10.1002/jps.2600790704.
Øie S. Drug distribution and binding. J Clin Pharmacol. 1986;26(8):583‐586. doi:10.1002/j.1552‐4604.1986.tb02953.x.
McPhillips JJ, Schwemer GT, Scott DI, Zinny M, Patterson D. Effects of carvedilol on blood pressure in patients with mild to moderate hypertension. A dose response study. Drugs. 1988;36(Suppl 6):82‐91. doi:10.2165/00003495‐198800366‐00015.
Morgan T, Anderson A, Cripps J, Adam W. Pharmacokinetics of carvedilol in older and younger patients. J Hum Hypertens. 1990;4(6):709‐715.
Elias K, Hellström PM, Webb DL, Sundbom M. Gastrointestinal physiology before and after duodenal switch with comparisons to unoperated lean controls: novel use of the SmartPill wireless motility capsule. Obes Surg. 2021;31(8):3483‐3489. doi:10.1007/s11695‐021‐05452‐4.
Gesquiere I, Hens B, Van der Schueren B, et al. Drug disposition before and after gastric bypass: fenofibrate and posaconazole. Br J Clin Pharmacol. 2016;82(5):1325‐1332. doi:10.1111/bcp.13054.
Spahn H, Henke W, Langguth P, Schloos J, Mutschler E. Measurement of carvedilol enantiomers in human plasma and urine using S‐naproxen chloride for chiral derivatization. Arch Pharm (Weinheim). 1990;323(8):465‐469. doi:10.1002/ardp.19903230805.
Nardotto GHB, Lanchote VL, Coelho EB, Della Pasqua O. Population pharmacokinetics of carvedilol enantiomers and their metabolites in healthy subjects and type‐2 diabetes patients. Eur J Pharm Sci. 2017;109S:S108‐S115. doi:10.1016/j.ejps.2017.05.033.
Wegler C, Wiśniewski JR, Robertsen I, et al. Drug disposition protein quantification in matched human jejunum and liver from donors with obesity. Clin Pharmacol Ther. 2022;111(5):1142‐1154. doi:10.1002/cpt.2558.
Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384‐411. doi:10.1124/pr.117.014407.
Kvitne KE, Krogstad V, Wegler C, et al. Short‐ and long‐term effects of body weight, calorie restriction and gastric bypass on CYP1A2, CYP2C19 and CYP2C9 activity. Br J Clin Pharmacol. 2022;88(9):4121‐4133. doi:10.1111/bcp.15349.
Bowman SL, Hudson SA, Simpson G, Munro JF, Clements JA. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol. 1986;21(5):529‐532. doi:10.1111/j.1365‐2125.1986.tb02837.x.
Sandvik P, Lydersen S, Hegstad S, Spigset O. Association between low body weight and cytochrome P‐450 enzyme activity in patients with anorexia nervosa. Pharmacol Res Perspect. 2020;8(3):e00615. doi:10.1002/prp2.615.
Rodríguez‐Morató J, Goday A, Langohr K, et al. Short‐ and medium‐term impact of bariatric surgery on the activities of CYP2D6, CYP3A4, CYP2C9, and CYP1A2 in morbid obesity. Sci Rep. 2019;9(1):20405. doi:10.1038/s41598‐019‐57002‐9.
Giessmann T, Modess C, Hecker U, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213‐222. doi:10.1016/j.clpt.2003.10.004.
Abbas M, Khan AM, Riffat S, Tipu MY, Nawaz HA, Usman M. Assessment of sex differences in pharmacokinetics of carvedilol in human. Pak J Pharm Sci. 2014;27(5):1265‐1269.
معلومات مُعتمدة: 18/06569-9 Fundação de Amparo à Pesquisa do Estado de São Paulo; Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: carvedilol; gastric bypass; pharmacokinetics; population‐based analysis
المشرفين على المادة: 0K47UL67F2 (Carvedilol)
0 (Propanolamines)
0 (Carbazoles)
0 (Multidrug Resistance-Associated Protein 2)
0 (ABCC2 protein, human)
0 (Adrenergic beta-Antagonists)
0 (Multidrug Resistance-Associated Proteins)
تواريخ الأحداث: Date Created: 20240609 Date Completed: 20240829 Latest Revision: 20240829
رمز التحديث: 20240830
DOI: 10.1111/bcp.16129
PMID: 38852609
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2125
DOI:10.1111/bcp.16129