دورية أكاديمية

Molecular and physiological changes in the SpaceX Inspiration4 civilian crew.

التفاصيل البيبلوغرافية
العنوان: Molecular and physiological changes in the SpaceX Inspiration4 civilian crew.
المؤلفون: Jones CW; Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA., Overbey EG; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.; Center for STEM, University of Austin, Austin, TX, USA., Lacombe J; Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA., Ecker AJ; Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA., Meydan C; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Ryon K; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Tierney B; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Damle N; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., MacKay M; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Afshin EE; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Foox J; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA., Park J; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Nelson TM; Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA., Suhail Mohamad M; TrialX Inc., New York, NY, USA., Byhaqui SGA; TrialX Inc., New York, NY, USA., Aslam B; TrialX Inc., New York, NY, USA., Tali UA; TrialX Inc., New York, NY, USA., Nisa L; TrialX Inc., New York, NY, USA., Menon PV; TrialX Inc., New York, NY, USA., Patel CO; TrialX Inc., New York, NY, USA., Khan SA; TrialX Inc., New York, NY, USA., Ebert DJ; KBR, Science & Space, Houston, TX, USA., Everson A; KBR, Science & Space, Houston, TX, USA., Schubert MC; Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA., Ali NN; Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA., Sarma MS; Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA., Kim J; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Houerbi N; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Grigorev K; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Garcia Medina JS; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Summers AJ; Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA., Gu J; Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA., Altin JA; The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA., Fattahi A; Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA., Hirzallah MI; Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA.; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA., Wu JH; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.; The Translational Research Institute for Space Health (TRISH), Houston, TX, USA., Stahn AC; Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA., Beheshti A; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA., Klotz R; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA., Ortiz V; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA., Yu M; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA., Patras L; Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania., Matei I; Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA., Lyden D; Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA., Melnick A; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA., Banerjee N; SpaceX, Hawthorne, CA, USA., Mullane S; SpaceX, Hawthorne, CA, USA., Kleinman AS; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA., Loesche M; SpaceX, Hawthorne, CA, USA., Menon AS; University of Texas, Department of Emergency Medicine, Houston, TX, USA., Donoviel DB; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.; The Translational Research Institute for Space Health (TRISH), Houston, TX, USA., Urquieta E; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.; The Translational Research Institute for Space Health (TRISH), Houston, TX, USA., Mateus J; SpaceX, Hawthorne, CA, USA., Sargsyan AE; KBR, Science & Space, Houston, TX, USA., Shelhamer M; Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA., Zenhausern F; Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA.; The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA., Bershad EM; Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA.; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA., Basner M; Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. basner@pennmedicine.upenn.edu., Mason CE; Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA. chm2042@med.cornell.edu.; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA. chm2042@med.cornell.edu.; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA. chm2042@med.cornell.edu.
المصدر: Nature [Nature] 2024 Jun 11. Date of Electronic Publication: 2024 Jun 11.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study 1 , but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight 2 , but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts 3 , which can inform countermeasure development for both private and government-sponsored space missions.
(© 2024. The Author(s).)
References: Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019). (PMID: 30975860758086410.1126/science.aau8650)
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 1162–1184 (2020). (PMID: 33242416844198810.1016/j.cell.2020.10.050)
Urquieta, E., Wu, J., Hury, J. & Donoviel, D. Establishment of an open biomedical database for commercial spaceflight. Nat. Med. 28, 611–612 (2022). (PMID: 3531846510.1038/s41591-022-01761-y)
Kim, J. et al. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal cell-type, sex, and microbiome-specific responses and recovery. Nat. Commun. 15, 4954 (2024). (PMID: 388625161116695210.1038/s41467-024-49211-2)
Overbey, E. G. et al. The Space Omics and Medical Atlas (SOMA): a comprehensive data resource and international biobank for astronauts. Nature https://doi.org/10.1038/s41586-024-07639-y (2024).
Garcia-Medina, J. S. et al. Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. Precis. Clin. Med. 7, pbae007 (2024). (PMID: 386341061102265110.1093/pcmedi/pbae007)
Houerbi, N. et al. Secretome profiling captures acute changes in oxidative stress, brain homeostasis and coagulation from spaceflight. Nat. Commun. 15, 4862 (2024). (PMID: 388624641116696910.1038/s41467-024-48841-w)
Grigorev, K. et al. Direct RNA sequencing of astronauts reveals spaceflight-associated epitranscriptome changes and stress-related transcriptional responses. Nat. Commun. https://doi.org/10.1038/s41467-024-48929-3 (2024).
Park, J. et al. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat. Commun. 15, 4773 (2024). (PMID: 388624941116690910.1038/s41467-024-48625-2)
Tierney, B. et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01635-8 (2024).
Crucian, B. et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 33, 456–465 (2013). (PMID: 2310014410.1007/s10875-012-9824-7)
Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1, 15013 (2015). (PMID: 28725716551549810.1038/npjmgrav.2015.13)
Mehta, S. K. et al. Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav. Immun. 41, 210–217 (2014). (PMID: 2488696810.1016/j.bbi.2014.05.014)
Mehta, S. K. et al. Latent virus reactivation in astronauts on the international space station. NPJ Microgravity 3, 11 (2017). (PMID: 28649633544558110.1038/s41526-017-0015-y)
Elko, E. A. et al. COVID-19 vaccination elicits an evolving, cross-reactive antibody response to epitopes conserved with endemic coronavirus spike proteins. Cell Rep. 40, 111022 (2022). (PMID: 35753310918899910.1016/j.celrep.2022.111022)
Henson, S. N. et al. PepSeq: a fully in vitro platform for highly multiplexed serology using customizable DNA-barcoded peptide libraries. Nat. Protoc. 18, 396–423 (2022). (PMID: 363851981033979510.1038/s41596-022-00766-8)
Ladner, J. T. et al. Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Rep. Med. 2, 100189 (2021). (PMID: 33495758781696510.1016/j.xcrm.2020.100189)
Pierson, D. L., Stowe, R. P., Phillips, T. M., Lugg, D. J. & Mehta, S. K. Epstein–Barr virus shedding by astronauts during space flight. Brain Behav. Immun. 19, 235–242 (2005). (PMID: 1579731210.1016/j.bbi.2004.08.001)
Kelley, E. J. et al. Virome-wide detection of natural infection events and the associated antibody dynamics using longitudinal highly-multiplexed serology. Nat. Commun. 14, 1783 (2023). (PMID: 369975171006226010.1038/s41467-023-37378-z)
Pavela, J. et al. Surveillance for jugular venous thrombosis in astronauts. Vasc. Med. 27, 365–372 (2022). (PMID: 3550289910.1177/1358863X221086619)
Auñón-Chancellor, S. M., Pattarini, J. M., Moll, S. & Sargsyan, A. Venous thrombosis during spaceflight. N. Engl. J. Med. 382, 89–90 (2020). (PMID: 3189352210.1056/NEJMc1905875)
Marshall-Goebel, K. et al. Assessment of jugular venous blood flow stasis and thrombosis during spaceflight. JAMA Netw. Open 2, e1915011 (2019). (PMID: 31722025690278410.1001/jamanetworkopen.2019.15011)
Arbeille, P. et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur. J. Appl. Physiol. 86, 157–168 (2001). (PMID: 1182247510.1007/s004210100473)
Arbeille, P., Provost, R., Zuj, K. & Vincent, N. Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment). Eur. J. Appl. Physiol. 115, 2099–2106 (2015). (PMID: 2599102710.1007/s00421-015-3189-6)
Clément, G. R. et al. Challenges to the central nervous system during human spaceflight missions to Mars. J. Neurophysiol. 123, 2037–2063 (2020). (PMID: 3229211610.1152/jn.00476.2019)
Roy-O’Reilly, M., Mulavara, A. & Williams, T. A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. NPJ Microgravity 7, 5 (2021). (PMID: 33594073788722010.1038/s41526-021-00133-z)
von Baumgarten, R. J. & Thumler, R. in Life Sciences and Space Research Vol. 17 (ed. Holmquist, R.) 161–170 (Pergamon, 1979).
Davis, J. R., Vanderploeg, J. M., Santy, P. A., Jennings, R. T. & Stewart, D. F. Space motion sickness during 24 flights of the space shuttle. Aviat. Space Environ. Med. 59, 1185–1189 (1988). (PMID: 3240221)
Thornton, W. E. & Bonato, F. Space motion sickness and motion sickness: symptoms and etiology. Aviat. Space Environ. Med. 84, 716–721 (2013). (PMID: 2385506710.3357/ASEM.3449.2013)
Shen, M. & Frishman, W. H. Effects of spaceflight on cardiovascular physiology and health. Cardiol. Rev. 27, 122–126 (2019). (PMID: 3036540610.1097/CRD.0000000000000236)
Arzeno, N. M., Stenger, M. B., Bloomberg, J. J. & Platts, S. H. Spaceflight-induced cardiovascular changes and recovery during NASA’s Functional Task Test. Acta Astronaut. 92, 10–14 (2013). (PMID: 10.1016/j.actaastro.2012.05.023)
Tu, D. et al. Dynamic ensemble prediction of cognitive performance in spaceflight. Sci. Rep. 12, 11032 (2022). (PMID: 35773291924689710.1038/s41598-022-14456-8)
Basner, M. et al. Development and validation of the cognition test battery for spaceflight. Aerosp. Med. Hum. Perform. 86, 942–952 (2015). (PMID: 26564759469128110.3357/AMHP.4343.2015)
Strangman, G. E., Sipes, W. & Beven, G. Human cognitive performance in spaceflight and analogue environments. Aviat. Space Environ. Med. 85, 1033–1048 (2014). (PMID: 2524590410.3357/ASEM.3961.2014)
Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 13, 904–912 (2014). (PMID: 25127232418843610.1016/S1474-4422(14)70122-X)
Jones, C. W., Basner, M., Mollicone, D. J., Mott, C. M. & Dinges, D. F. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep 45, zsac006 (2022). (PMID: 35023565891919710.1093/sleep/zsac006)
Chen, P. et al. Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens. Talanta 191, 81–88 (2019). (PMID: 3026210210.1016/j.talanta.2018.08.043)
Devadhasan, J. P. et al. Point-of-care vertical flow immunoassay system for ultra-sensitive multiplex biothreat-agent detection in biological fluids. Biosens. Bioelectron. 219, 114796 (2023). (PMID: 3625711510.1016/j.bios.2022.114796)
Summers, A. J. et al. Optimization of an antibody microarray printing process using a designed experiment. ACS Omega 7, 32262–32271 (2022). (PMID: 36120062947651710.1021/acsomega.2c03595)
Diamond, S. G. & Markham, C. H. Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat. Space Environ. Med. 62, 201–205 (1991). (PMID: 2012564)
Markham, C. H. & Diamond, S. G. A predictive test for space motion sickness. J. Vestib. Res. 3, 289–295 (1993). (PMID: 827526310.3233/VES-1993-3309)
Open science in space. Nat. Med. 27, 1485–1485 (2021).
Lee, S. M. C., Feiveson, A. H., Stein, S., Stenger, M. B. & Platts, S. H. Orthostatic intolerance after ISS and space shuttle missions. Aerosp. Med. Hum. Perform. 86, A54–A67 (2015). (PMID: 2663019610.3357/AMHP.EC08.2015)
Meck, J. V., Reyes, C. J., Perez, S. A., Goldberger, A. L. & Ziegler, M. G. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom. Med. 63, 865–873 (2001). (PMID: 1171962310.1097/00006842-200111000-00003)
Kelly, T. H., Hienz, R. D., Zarcone, T. J., Wurster, R. M. & Brady, J. V. Crewmember performance before, during, and after spaceflight. J. Exp. Anal. Behav. 84, 227–241 (2005). (PMID: 16262187124398010.1901/jeab.2005.77-04)
Newman, D. J. & Lathan, C. E. Memory processes and motor control in extreme environments. IEEE Trans. Syst. Man Cybern. C. Appl. Rev. 29, 387–394 (1999). (PMID: 1154239110.1109/5326.777074)
Bloomberg, J. J., Reschke, M. F., Clément, G. R., Mulavara, A. P. & Taylor, L. C. Evidence Report: Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility due to Vestibular/Sensorimotor Alterations Associated with Space Flight (NASA, 2016).
Barisic, D. et al. ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis. Cancer Cell 42, 583–604.e11 (2024). (PMID: 3845818710.1016/j.ccell.2024.02.010)
Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020). (PMID: 3226556110.1038/s41587-020-0485-4)
Pundyavana, A., Gilad, Y., Stahn, A. C. & Basner, M. Cognition test battery survey: development of a single alertness and mood score for short- and long-duration spaceflight. Appl. Sci. 13, 2364 (2023). (PMID: 10.3390/app13042364)
Curran-Everett, D. Multiple comparisons: philosophies and illustrations. Am. J. Physio. Regul. Integr. Comp. Physio. 279, R1–R8 (2000). (PMID: 10.1152/ajpregu.2000.279.1.R1)
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015). (PMID: 25690850464383510.1038/nbt.3122)
Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods 19, 1590–1598 (2022). (PMID: 36357692971867810.1038/s41592-022-01666-1)
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019). (PMID: 31779668688357910.1186/s13059-019-1891-0)
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). (PMID: 28298430541177710.1101/gr.213959.116)
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). (PMID: 31388474666256710.7717/peerj.7359)
Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7, 000685 (2021). (PMID: 347393698743544)
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). (PMID: 2903537210.1038/nbt.3988)
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021). (PMID: 3334969910.1038/s41587-020-00774-7)
Fink, Z. W., Martinez, V., Alti, J. & Ladner, J. T. PepSIRF: a flexible and comprehensive tool for the analysis of data from highly-multiplexed DNA-barcoded peptide assays. Preprint at https://doi.org/10.48550/arXiv.2007.05050 (2024).
Beaton, K. H., Huffman, W. C. & Schubert, M. C. Binocular misalignments elicited by altered gravity provide evidence for nonlinear central compensation. Front. Syst. Neurosci. 9, 81 (2015). (PMID: 26082691445136110.3389/fnsys.2015.00081)
Karmali, F., Ramat, S. & Shelhamer, M. Vertical skew due to changes in gravitoinertial force: a possible consequence of otolith asymmetry. J. Vestib. Res. 16, 117–125 (2006). (PMID: 1731233910.3233/VES-2006-16304)
Markham, C. H., Diamond, S. G. & Stoller, D. F. Parabolic flight reveals independent binocular control of otolith-induced eye torsion. Arch. Ital. Biol. 138, 73–86 (2000). (PMID: 10604035)
Karmali, F. Vertical eye misalignments during pitch rotation and vertical translation: evidence for bilateral asymmetries and plasticity in the otolith-ocular reflex. PhD thesis, Johns Hopkins Univ. (2007).
Beaton, K. H., Shelhamer, M. J., Roberts, D. C. & Schubert, M. C. A rapid quantification of binocular misalignment without recording eye movements: vertical and torsional alignment nulling. J. Neurosci. Methods 283, 7–14 (2017). (PMID: 2830060510.1016/j.jneumeth.2017.03.009)
Basner, M. et al. Continuous and intermittent artificial gravity as a countermeasure to the cognitive effects of 60 days of head-down tilt bed rest. Front. Physiol. 12, 643854 (2021). (PMID: 33815148800997410.3389/fphys.2021.643854)
Basner, M. et al. Effects of head-down tilt bed rest plus elevated CO 2 on cognitive performance. J. Appl. Physiol. 130, 1235–1246 (2021). (PMID: 33630672826278010.1152/japplphysiol.00865.2020)
Smith, M. G. et al. Effects of six weeks of chronic sleep restriction with weekend recovery on cognitive performance and wellbeing in high-performing adults. Sleep 44, zsab051 (2021). (PMID: 3363006910.1093/sleep/zsab051)
Basner, M. et al. Cognition test battery: adjusting for practice and stimulus set effects for varying administration intervals in high performing individuals. J. Clin. Exp. Neuropsychol. 42, 516–529 (2020). (PMID: 32539487737545710.1080/13803395.2020.1773765)
Moore, T. M. et al. Validation of the cognition test battery for spaceflight in a sample of highly educated adults. Aerosp. Med. Hum. Perform. 88, 937–946 (2017). (PMID: 2892314310.3357/AMHP.4801.2017)
Berrios, D. C. et al. NASA GeneLab: interfaces for the exploration of space omics data. Nucleic Acids Res. 49, D1515–D1522 (2021).
Scott, R. T. et al. Advancing the integration of biosciences data sharing to further enable space exploration. Cell Rep. 33, 108441 (2020).
تواريخ الأحداث: Date Created: 20240611 Latest Revision: 20240818
رمز التحديث: 20240819
DOI: 10.1038/s41586-024-07648-x
PMID: 38862026
قاعدة البيانات: MEDLINE