دورية أكاديمية

Impact of papain on the treatment of raw diluted dromedary semen.

التفاصيل البيبلوغرافية
العنوان: Impact of papain on the treatment of raw diluted dromedary semen.
المؤلفون: Abdel-Ghani MA; Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia.; Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt., Ghoneim IM; Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia., Nagano M; Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan., AlMomen HQM; Ministry of Agriculture, AL-Ahsa, Saudi Arabia.
المصدر: Reproduction in domestic animals = Zuchthygiene [Reprod Domest Anim] 2024 Jun; Vol. 59 (6), pp. e14637.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Paul Parey Scientific Publishers Country of Publication: Germany NLM ID: 9015668 Publication Model: Print Cited Medium: Internet ISSN: 1439-0531 (Electronic) Linking ISSN: 09366768 NLM ISO Abbreviation: Reprod Domest Anim Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; Hamburg : Paul Parey Scientific Publishers, c1990-
مواضيع طبية MeSH: Papain*/pharmacology , Camelus* , Sperm Motility*/drug effects , Semen*/drug effects , Semen Preservation*/veterinary , Semen Preservation*/methods, Animals ; Male ; Viscosity ; Semen Analysis/veterinary ; Spermatozoa/drug effects ; Spermatozoa/physiology ; Acrosome/drug effects
مستخلص: A variety of parameters, including liquefaction and semen viscosity, affect the sperm's ability to travel and reach the egg for fertilization and conception. Given that the details behind the viscosity of the semen in male camels have not yet been fully clarified, the purpose of this study was to ascertain how the addition of papain affected the viscosity of fresh diluted camel semen. The study examined semen samples derived from camels that had distinct viscosities. Sperm motility, viability, abnormal sperm percentage, concentration, viscosity, morphometry, acrosome integrity and liquefaction were among the evaluations following 0, 5, 10, 20 or 30 min of incubation at 37°C with papain (0.004 mg/mL, 0.04 mg/mL or 0.4 mg/mL; a semen sample without papain was used as a control). A statistically significant interaction between the effects of papain concentrations and incubation time was found (F = 41.68, p = .0001). Papain concentrations (p = .0001) and incubation times (p = .0001) both had a statistically significant impact on viscosity, according to a simple main effects analysis. A lower viscosity was found (p < .05) at 0.04 mg/mL (0.1 ± 0.0) after 10 min of incubation. A simple main effects analysis showed that papain concentrations and incubation time have a statistically significant effect on sperm motility (p = .0001). At 0.04 mg/mL papain, the sperm motility % was higher (p < .05) after 10 min (64.4 ± 4.8), 20 min (68.4 ± 6.2), and 30 min incubation (72.2 ± 6.6) compared to 0, 5 min (38.3 ± 4.1 and 51.6 ± 5.0, respectively). In conclusion, the fresh diluted camel semen had the lowest viscosity properties after 10 min of incubation with 0.04 mg/mL papain, without compromising sperm motility, viability, acrosome integrity and sperm morphology.
(© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Adler, L. L., & Macanas, E. (1997). Chymotrypsin increases the number of sperm isolated from viscous male factor specimens. Fertility and Sterility, 68(1), S107.
Aguilar, J. G. D., & Hélia Harumi Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Review. Food Research International, 103, 253–262.
Amri, E., & Mamboya, F. (2012). Papain, a plant enzyme of biological importance: A review. American Journal of Biochemistry and Biotechnology, 8(2), 99–104.
Anamthathmakula, P., & Winuthayanon, W. (2020). Mechanism of semen liquefaction and its potential for a novel non‐hormonal contraception. Biology of Reproduction, 103(2), 411–426.
Apichela, S. A., Argañaraz, M. E., Giuliano, S., Zampini, R., Carretero, I., Miragaya, M., & Miceli, D. C. (2014). Llama oviductal sperm reservoirs: Involvement of bulbourethral glands. Andrologia, 46, 290–295.
Barbagallo, F., La Vignera, A., Cannarella, R., Crafa, A., Calogero, A. E., & Condorelli, R. A. (2021). The relationship between seminal fluid hyperviscosity and oxidative stress: A systematic review. Antioxidants, 10(3), 356.
Beeley, J. A., Yip, H. K., & Stevenson, A. G. (2000). Chemochemical caries removal: A review of the techniques and latest developments. British Dental Journal, 188, 427–430.
Bertuzzi, M. L., Fumuso, F. G., Giuliano, S. M., Miragaya, M. H., Gallelli, M. F., & Carretero, M. I. (2020). New protocol to separate llama sperm without enzymatic treatment using Androcoll‐ETM. Reproduction in Domestic Animals, 55(9), 1154–1162.
Boccia, L., Di Palo, R., De Rosa, A., Attanasio, L., Mariotti, E., & Gasparrini, B. (2007). Evaluation of buffalo semen by Trypan blue/ Giemsa staining and related fertility in vitro. Italian Journal of Animal Science, 6, 2: Proceedings of the 8th World Buffalo Congress, Caserta, October 19‐22, 2007.
Bravo, P. W., Ccallo, M., & Garnica, J. (2000). The effect of enzymes on semen viscosity in Llamas and Alpacas. Small Ruminant Research, 38, 91–95.
Brown, B. W. (2000). A review on reproduction in south American camelids. Animal Reproduction Science, 58, 169–195.
Castiglione, R., Salemi, M., Vicari, L. O., & Vicari, E. (2014). Relationship of semen hyperviscosity with IL‐6, TNF‐α, IL‐10 and ROS production in seminal plasma of infertile patients with prostatitis and prostato‐vesiculitis. Andrologia, 46, 1148–1155.
Deen, A., Vyas, S., & Sahan, M. S. (2005). Problems of artificial insemination in dromedarius camel – Failure of ovulation and entrapment of spermatozoa in gelatinous camel semen. Veterinarski Arhiv, 75(4), 293–301.
Deen, A., Vyas, S., & Sahani, M. S. (2003). Semen collection, cryopreservation and artificial insemination in the dromedary camel. Animal Reproduction Science, 77(3–4), 223–233.
Drabovich, A. P., Saraon, P., Jarvi, K., & Diamandis, E. P. (2014). Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nature Reviews Urology, 11, 278–288.
Du Plessis, S. S., Gokul, S., & Agarwal, A. (2013). Semen hyperviscosity: Causes, consequences, and cures. Frontiers in Bioscience (Elite Edition), 5, 224–231.
El‐Bahrawy, K. A. (2010). Cryopreservation of dromedary camel semen supplemented with α‐amylase enzyme. Journal of Camel Practice and Research, 17, 1–6.
El‐Bahrawy, K. A., EL‐Hassanein, E. E., & Rateb, S. A. (2012). Effect of collection frequency, extender and thawing temperature on the motility recovery of cryopreserved dromedary camel spermatozoa. Journal of Animal and Poultry Production, 3(2), 73–82.
El‐Bahrawy, K., Rateb, S., Khalifa, M., Monaco, D., & Lacalandra, G. (2017). Physical and kinematic properties of cryopreserved camel sperm after elimination of semen viscosity by different techniques. Animal Reproduction Science, 187, 100–108.
Elia, J., Delfino, M., Imbrogno, N., Capogreco, F., Lucarelli, M., Rossi, T., & Mazzilli, F. (2009). Human semen hyperviscosity: Prevalence, pathogenesis and therapeutic aspects. Asian Journal of Andrology, 11, 609–615.
Evans, G., & Maxwell, W. M. C. (1987). Salamon's artificial insemination of sheep and goats. Butterworths.
Fei, X. M., Zhou, Y. L., Qi, J. W., Wu, J. G., Qiu, L. N., & Wang, Z. N. (2009). In vitro inhibitory effects of papain on platelet aggregation. Chinese Journal of Clinical Pharmacology and Therapeutics, 14, 906–911.
Fumuso, F. G., Giuliano, S. M., Chaves, M. G., Neild, D. M., Miragaya, M. H., & Carretero, M. I. (2019). Evaluation of the cryoprotective effect of seminal plasma on llama (Lama glama) spermatozoa. Andrologia, 51(6), e13270.
Fumuso, F. G., Giuliano, S. M., Chaves, M. G., Neild, D. M., Miragaya, M. H., Gambarotta, M. C., & Carretero, M. I. (2018). Seminal plasma affects the survival rate and motility pattern of raw llama spermatozoa. Animal Reproduction Science, 192, 99–106.
Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R., & Kirkman‐Brown, J. C. (2011). Mammalian sperm motility: Observation and theory. Annual Review of Fluid Mechanics, 43(1), 501–528.
Ghaffarilaleh, V., Fisher, D., Henkel, A., & Carica, R. (2019). Papaya seed extract slows human sperm. Journal of Ethnopharmacology, 241(15), 111972.
Harchegani, A. B., Rahmani, H., Eisa Tahmasbpour, E., & Shahriary, A. (2019). Hyperviscous semen causes poor sperm quality and male infertility through induction of oxidative stress current. Urology, 13, 1–6.
Hermes, R., Saragusty, J., Göritz, F., Bartels, P., Potier, R., Baker, B., Streich, W. J., & Hildebrandt, T. B. (2013). Freezing African elephant semen as a new population management tool. PLoS One, 8, e57616.
Kershaw, C. M., Evans, G., Rodney, R., & Maxwell, W. M. C. (2017). Papain and its inhibitor E‐64 reduce camelid semen viscosity without impairing sperm function and improve post‐thaw motility rates. Reproduction, Fertility, and Development, 29, 1107–1114.
Kershaw, C. M., Stuart, C., Evans, G., & Maxwell, W. M. (2013). The effect of glycosaminoglycan enzymes and proteases on the viscosity of alpaca seminal plasma and sperm function. Animal Reproduction Sciience, 138, 261–267.
Kingan, S. B., Tatar, M., & Rand, D. M. (2003). Reduced polymorphism in the chimpanzee semen coagulating protein, semenogelin I. Journal of Molecular Evolution, 57, 159–169.
Layali, I., Tahmasbpour, E., Joulaei, M., Jorsaraei, S. G. A., & Farzanegi, P. (2015). Total antioxidant capacity and lipid peroxidation in semen of patient with hyperviscosity. Cell Journal, 16, 554–559.
Ma, G., Vyas, S., Saini, N., Sena, D. S., Kishore, N., & Patil, N. V. (2011). Mineral status of blood and semen of dromedary camels. Indian Veterinary Journal, 88(8), 72–73.
Mal, G., Vyas, S., & Patil, N. V. (2014). Comparative study of seminal plasma proteins in dromedary camels. Indian Journal of Animal Sciences, 84(11), 3–14.
Mal, G., Vyas, S., Srinivasan, A., Patil, N. V., & Pathak, K. M. L. (2016). Studies on liquefaction time and proteins involved in the improvement of seminal characteristics in dromedary camels (Camelus dromedarius). Scientifica (Cairo), 2016, 4659358.
Mendeluk, G. R., Flecha, L. G., Castello, P., & Blanco, A. M. (1995). Seminal hyperviscosity: Possible molecular etiologic factors. Biorheology, 32, 305–306.
Mendeluk, G. R., Munuce, M. J., Carizza, C., Sardi, M., & Bregni, C. (1997). Sperm motility and ATP content in seminal hyperviscosity. Archives of Andrology, 39, 223–227.
Menon, A. G., Barkema, H. W., Wilde, R., Kastelic, J. P., & Thundathil, J. C. (2011). Associations between sperm abnormalities, breed, age, and scrotal circumference in beef bulls. Canadian Journal of Veterinary Research, 75(4), 241–247. 75.
Mitra, A., Richardson, R. T., & O'Rand, M. G. (2010). Analysis of recombinant human semenogelin as an inhibitor of human sperm motility. Biology of Reproduction, 82, 489–496.
Monaco, D., Fatnassi, M., Padalino, B., Hammadi, M., Khorchani, T., & Lacalandra, G. M. (2016). Effect of α‐amylase, papain, and Spermfluid® treatments on viscosity and semen parameters of dromedary camel ejaculates. Research in Veterinary Science, 105, 5–9.
Monaco, D., & Lacalandra, G. M. (2020). Considerations for the development of a dromedary camel (Camelus dromedarius) semen collection centre. Animal Reproduction Science, 212, 106239.
Morton, K. M., Gibb, Z., Leahy, T., & Maxwell, W. M. C. (2012). Effect of enzyme treatment and mechanical removal of alpaca (Vicugna pacos) seminal plasma on sperm functional integrity. Journal of Camelid Science, 5, 62–81.
Mosaferi, S., Niasari‐Naslaji, A., Abarghani, A., Gharahdaghi, A. A., & Gerami, A. (2005). Biophysical and biochemical characteristics of bactrian camel semen collected by artificial vagina. Theriogenology, 63, 92–101.
Niasari‐Naslaji, A., Mosaferi, S., Bahmani, N., Gerami, A., Gharahdaghi, A. A., Abarghani, A., & Ghanbari, A. (2007). Semen cryopreservation in Bactrian camel (Camelus bactrianus) using shotor diluent: Effects of cooling rates and glycerol concentrations. Theriogenology, 68, 618–625.
Rickard, J. P., Pool, K., De Graaf, S. P., Portas, T., Rourke, N., Wiesner, M., Hildebrandt, T. B., Göritz, F., & Hermes, R. (2022). Increasing the yield and cryosurvival of spermatozoa from rhinoceros ejaculates using the enzyme papain. Biology (Basel)., 11(2), 154.
Serafini, R., Longobardi, V., Spadetta, M., Neri, D., Ariota, B., Gasparrini, B., & Di Palo, R. (2014). Trypan blue/Giemsa staining to assess sperm membrane integrity in Salernitano stallions and its relationship to pregnancy rates. Reproduction in Domestic Animals, 49, 41–47.
Seyedasgari, F., Asadi, B., & Kim, E. (2023). Seminal plasma modulates post‐thaw longevity and motility of frozen sperm in dromedary camel. Animal Bioscience, 36(12), 1821–1830.
Shekher, C., Vyas, S., Purohit, G. N., & Patil, N. V. (2012). Use of collagenase type‐1 to improve the seminal characteristics of dromedary camel semen. European Journal of Veterinary Medicine, 1, 17–27.
Simon, L., & Lewis, S. E. M. (2011). Sperm DNA damage or progressive motility: Which one is the better predictor of fertilization in vitro? Systems Biology in Reproductive Medicine, 57, 133–138.
Skidmore, J. A., & Billah, M. (2006). Comparison of pregnancy rates in dromedary camels (Camelus dromedarius) after deep intra‐uterine versus cervical insemination. Theriogenology, 66, 292–296.
Skidmore, J. A., Morton, K. M., & Billah, M. (2013). Artificial insemination in dromedary camels. Animal Reproduction Science, 136, Issue 3, 10, 178–186.
Stuart, C., & Bathgate, R. (2015). Advancing assisted reproductive technologies in camelids (especially the alpaca). Rural Industries Research and Development. Corporation (RIRDC), Publication No 15/067 RIRDC, Project No. PRJ‐006417.
Suarez, S. S., & Pacey, A. A. (2006). Sperm transport in the female reproductive tract. Human Reproduction Update, 12, 23–37.
Tingari, M. D., Manna, M. M., Rahim, A. T., Ahmed, A. K., & Hamad, M. H. (1986). Studies on camel semen. I. Electroejaculation and some aspects of semen characteristics. Animal Reproduction Science, 12, 213–222.
Tsuge, H., Nishimura, T., Tada, Y., Asao, T., Turk, D., Turk, V., & Katunuma, N. (1999). Inhibition mechanism of cathepsin L‐specific inhibitors based on the crystal structure of papainCLIK148 complex. Biochemical and Biophysical Research Communications, 266(2), 411–416.
Uhlig, H. (1998). Industrial enzymes and their applications (1st ed., p. 454). John Wiley and Sons, ISBN‐10: 0471196606.
Vasa, S. S. (2011). Semen analysis and sperm function tests: How much to test? Indian Journal of Urology, 27(1), 41–48.
Vaughan, J. L., & Tibary, A. (2006). Reproduction in female south American camelids: A review and clinical observations. Small Ruminant Research, 61, 259–281.
Verstegen, J., Iguer‐Ouada, M., & Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology, 57, 149–179.
Von Baer, L., & Helleman, C. (1998). Variables seminales en llama (Lama glama). Archivos de Medicina Veterinaria, 428(30), 171–176.
معلومات مُعتمدة: A290 King Faisal University
فهرسة مساهمة: Keywords: camel; papain; semen; viscosity
المشرفين على المادة: EC 3.4.22.2 (Papain)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240612
رمز التحديث: 20240612
DOI: 10.1111/rda.14637
PMID: 38864674
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0531
DOI:10.1111/rda.14637