دورية أكاديمية

Historical trends of heavy metals applying radio-dating and neutron activation analysis (NAA) in sediment cores, Burullus Lagoon, Egypt.

التفاصيل البيبلوغرافية
العنوان: Historical trends of heavy metals applying radio-dating and neutron activation analysis (NAA) in sediment cores, Burullus Lagoon, Egypt.
المؤلفون: Ghanem A; Physics Department, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt., Nada A; Physics Department, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt., Abu-Zeid H; Physics Department, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt., Madcour W; Radiation Protection Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt., Shetaia SA; Geology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt., Imam N; Physics & Geology Lab, National Institute of Oceanography and Fisheries, Cairo, Egypt. na.imam@niof.sci.eg.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jul; Vol. 31 (31), pp. 43633-43658. Date of Electronic Publication: 2024 Jun 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Metals, Heavy*/analysis , Geologic Sediments*/chemistry , Environmental Monitoring* , Water Pollutants, Chemical*/analysis, Egypt ; Neutron Activation Analysis
مستخلص: Burullus lagoon is part of Egypt's protected area network. The lagoon serves as a reservoir for drainage water discharged from agricultural areas, and the lake's sediments provide a unique opportunity to record environmental behavior and reconstruct of the heavy metal contamination history. In the present study, the sediment chronology, sedimentation rates, and metal accumulation fluxes were estimated in four sediment cores using 210 Pb dating models to evaluate how human activities have affected the coastal environment. Using the radioisotopes 210 Pb and 137 Cs, radiometric dating was carried out using gamma-ray spectrometry. At the Egypt Second Research Reactor (ETRR-2), the element concentrations were determined using the instrumented neutron activation analysis (INAA- k 0 method). Our findings show that the constant rate of supply (CRS), which has been verified with the peak of artificial radionuclide 137 Cs, is the best model performed for the chronology of Burullus Lagoon. The average sedimentation rate, according to 210 Pb dating models, is 0.85 cm/year. The large variation in sedimentation rates, especially after the 1990s, is consistent with an increase in the anthropogenic flux of heavy metals. This may be led into a significant environmental problem such as reducing the size of the lake and degrading the quality the water in Burullus Lagoon. Enrichment factor (EF) of the studied elements displayed the following order: Cl > Ca > Na > Br > Zn > Ta > Ti > V > Cr > Sc > Mg > Mn > Fe > Hf which is higher than unity. Furthermore, the Nemerow pollution index (PI Nemerow ) revealed that pollution was increasing in the direction of the drains and slightly polluted. Consequently, pollutant indices showed that urbanization and industrial development may have increased the depositional fluxes of the metals in sediments over time.
(© 2024. The Author(s).)
التعليقات: Erratum in: Environ Sci Pollut Res Int. 2024 Jul;31(31):43659. doi: 10.1007/s11356-024-34102-2. (PMID: 38954348)
References: Abbasi A (2019) 210Pb and 137Cs based techniques for the estimation of sediment chronologies and sediment rates in the Anzali Lagoon, Caspian Sea. J Radioanal Nucl Chem 322:319–330. https://doi.org/10.1007/s10967-019-06739-8. (PMID: 10.1007/s10967-019-06739-8)
Al-Afify ADG, Abdo MH, Othman AA, Abdel-Satar AM (2023) Water quality and microbiological assessment of burullus lake and its surrounding drains. Water Air Soil Pollut 234:1–19. https://doi.org/10.1007/s11270-023-06351-3. (PMID: 10.1007/s11270-023-06351-3)
Ali MR, Islam MA, Hossain MF et al (2021) Depth-wise elemental contamination trend in sediment cores of the Sundarbans mangrove forest, Bangladesh. J Radioanal Nucl Chem 328:1349–1359. https://doi.org/10.1007/s10967-021-07739-3. (PMID: 10.1007/s10967-021-07739-3)
Appleby PG (2000) Radiometrie dating of sediment records in European mountain lakes. J Limnol 59:1–14. https://doi.org/10.4081/jlimnol.2000.s1.1. (PMID: 10.4081/jlimnol.2000.s1.1)
Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments. Basin Analysis Coring and Chronological Techniques. Kluwer Acad Publ Dordr 1:171–172.
Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93. https://doi.org/10.1177/0959683607085598. (PMID: 10.1177/0959683607085598)
Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Paleolimnology 29–35. https://doi.org/10.1007/978-94-009-7290-2&#95;5.
Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harman RS (eds) In: Uranium-series disequilibrium: application to earth, marine and environment sciences. Clarendon Press, Oxford, pp 731–738.
Appleby PG, Birks HH, Flower RJ et al (2001) Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes (the CASSARINA project). Aquat Ecol 35:347–367. https://doi.org/10.1023/A:1011938522939. (PMID: 10.1023/A:1011938522939)
Ashraf A, Saion E, Gharibshahi E et al (2018) Distribution of heavy metals in core marine sediments of Coastal East Malaysia by instrumental neutron activation analysis and inductively coupled plasma spectroscopy. Appl Radiat Isot 132:222–231. https://doi.org/10.1016/j.apradiso.2017.11.012. (PMID: 10.1016/j.apradiso.2017.11.012)
Badawy WM, Duliu OG, El Samman H et al (2021) A review of major and trace elements in Nile River and Western Red Sea sediments: an approach of geochemistry, pollution, and associated hazards. Appl Radiat Isot 170:109595. https://doi.org/10.1016/j.apradiso.2021.109595. (PMID: 10.1016/j.apradiso.2021.109595)
Badawy W, Elsenbawy A, Dmitriev A et al (2022) Characterization of major and trace elements in coastal sediments along the Egyptian Mediterranean Sea. Mar Pollut Bull 177:113526. https://doi.org/10.1016/j.marpolbul.2022.113526. (PMID: 10.1016/j.marpolbul.2022.113526)
Baltas H, Kiris E, Dalgic G, Cevik U (2016) Distribution of 137Cs in the Mediterranean mussel (Mytilus galloprovincialis) in Eastern Black Sea Coast of Turkey. Mar Pollut Bull 107:402–407. https://doi.org/10.1016/j.marpolbul.2016.03.032. (PMID: 10.1016/j.marpolbul.2016.03.032)
Barsanti M, Garcia-Tenorio R, Schirone A, et al (2020) Challenges and limitations of the 210Pb sediment dating method: results from an IAEA modelling interlaboratory comparison exercise. Quat Geochronol 59. https://doi.org/10.1016/j.quageo.2020.101093.
Başkaya H, Doǧru M, Küçükönder A (2014) Determination of the 137Cs and 90Sr radioisotope activity concentrations found in digestive organs of sheep fed with different feeds. J Environ Radioact 134:61–65. https://doi.org/10.1016/j.jenvrad.2014.02.023. (PMID: 10.1016/j.jenvrad.2014.02.023)
Benninger L, Suayah I, Stanley D (1998) Manzala lagoon, Nile delta, Egypt: modern sediment accumulation base on radioactive tracers. Env Geol 34:183–193. (PMID: 10.1007/s002540050270)
Bilici S, Külahcı F, Bilici A (2019) Spatial modelling of Cs-137 and Sr-90 fallout after the Fukushima nuclear power plant accident. J Radioanal Nucl Chem 322:431–454. https://doi.org/10.1007/s10967-019-06713-4. (PMID: 10.1007/s10967-019-06713-4)
Binford M (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267. (PMID: 10.1007/BF00219461)
Bing H, Wu Y, Zhou J et al (2016) Chemosphere Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere 148:211–219. https://doi.org/10.1016/j.chemosphere.2016.01.042. (PMID: 10.1016/j.chemosphere.2016.01.042)
Boyd BM (2016) A radiometric study of sediment accumulation and accretion in tidal marshes of Delaware and New Jersey. A dissertation submitted to the faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography.
Bruel R, Sabatier P (2020) Serac: A R package for ShortlivEd RAdionuclide chronology of recent sediment cores. J Environ Radioact 225:106449. https://doi.org/10.1016/j.jenvrad.2020.106449. (PMID: 10.1016/j.jenvrad.2020.106449)
Chen Z, Salem A, Xu Z, Zhang W (2010) Ecological implications of heavy metal concentrations in the sediments of Burullus Lagoon of Nile Delta Egypt. Estuar Coast Shelf Sci 86:491–498. https://doi.org/10.1016/j.ecss.2009.09.018. (PMID: 10.1016/j.ecss.2009.09.018)
Chen X, Qiao Q, McGowan S et al (2019) Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles. CATENA 174:546–556. https://doi.org/10.1016/j.catena.2018.11.041. (PMID: 10.1016/j.catena.2018.11.041)
Cuellar-Martinez T, Carolina Ruiz-Fern Andez A, Sanchez-Cabeza J-A, Alonso-Rodríguez R (2017) Sedimentary record of recent climate impacts on an insular coastal lagoon in the Gulf of California. https://doi.org/10.1016/j.quascirev.2017.01.002.
Davutluoglu OI, Seckin G, Ersu CB et al (2011) Heavy metal content and distribution in surface sediments of the Seyhan River, Turkey. J Environ Manage 92:2250–2259. https://doi.org/10.1016/j.jenvman.2011.04.013. (PMID: 10.1016/j.jenvman.2011.04.013)
De Corte F, Simonits A (2003) Recommended nuclear data for use in the k0 standardization of neutron activation analysis. At Data Nucl Data Tables 85:47–67. https://doi.org/10.1016/S0092-640X(03)00036-6. (PMID: 10.1016/S0092-640X(03)00036-6)
Do Nascimento Gonçalves P, Damatto SR, Leonardo L, Souza JM (2021) Natural radionuclides in soil profiles and sediment cores from Jundiaí reservoir, state of Sao Paulo. Braz J Rad Sci 9:1–18.
El-Alfy MA-H, El-Azim HA, El-Amier YA (2017) Assessment of heavy metal contamination in surface water of Burullus Lagoon Egypt. J Sci Agric 1:233. https://doi.org/10.25081/jsa.2017.v1.814. (PMID: 10.25081/jsa.2017.v1.814)
El-Amier YA, El-Azim HA, El-Alfy MA (2016) Spatial assessment of water and sediment quality in burullus lake using GIS technique. J Geogr Environ Earth Sci Int 6:1–16. https://doi.org/10.9734/jgeesi/2016/23311. (PMID: 10.9734/jgeesi/2016/23311)
Eleftheriou G, Tsabaris C, Papageorgiou DK et al (2018) Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean. J Radioanal Nucl Chem 316:655–671. https://doi.org/10.1007/s10967-018-5802-8. (PMID: 10.1007/s10967-018-5802-8)
Evangeliou N, Florou H, Bokoros P, Scoullos M (2009) Temporal and spatial distribution of 137Cs in Eastern Mediterranean Sea. Horizontal and vertical dispersion in two regions. J Environ Radioact 100:626–636. https://doi.org/10.1016/j.jenvrad.2009.04.014. (PMID: 10.1016/j.jenvrad.2009.04.014)
Feng B, Onda Y, Wakiyama Y et al (2022) Persistent impact of Fukushima decontamination on soil erosion and suspended sediment. Nat Sustain 5:879–889. https://doi.org/10.1038/s41893-022-00924-6. (PMID: 10.1038/s41893-022-00924-6)
Forcing C, Region M (2014) Storminess and environmental change (climate forcing and responses in the Mediterranean Region), Edited by Nazzareno Diodato and Gianni, Dordrecht: Springer Netherlands. 39, 268. https://books.google.de/books?id=YY&#95;FBAAAQBAJ&pg=PA11&lpg=PA11&dq=Storm . Accessed 2016.
Glascock MD (2015) Tables for analytical methods at MURR: NAA, XRF and ICP-MS. Research Reactor Center, University of Missouri, Columbia.
Gong J, Ouyang W, He M, Lin C (2023) Heavy metal deposition dynamics under improved vegetation in the middle reach of the Yangtze River. Environ Int 171:107686. https://doi.org/10.1016/j.envint.2022.107686. (PMID: 10.1016/j.envint.2022.107686)
Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta - Part B at Spectrosc 66:193–241. https://doi.org/10.1016/J.SAB.2010.12.011. (PMID: 10.1016/J.SAB.2010.12.011)
Gu J, Chen Z, Salem A (2011) Post-Aswan dam sedimentation rate of lagoons of the Nile Delta Egypt. Environ Earth Sci 64:1807–1813. https://doi.org/10.1007/s12665-011-0983-2. (PMID: 10.1007/s12665-011-0983-2)
Guo J, Costa OS, Wang Y et al (2020) Accumulation rates and chronologies from depth profiles of 210Pbex and 137Cs in sediments of northern Beibu Gulf South China Sea. J Environ Radioact 213:106136. https://doi.org/10.1016/j.jenvrad.2019.106136. (PMID: 10.1016/j.jenvrad.2019.106136)
Hakanson L (1980) An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res 14:975–1001. https://doi.org/10.1016/0043-1354(80)90143-8. (PMID: 10.1016/0043-1354(80)90143-8)
Hamza W (2009) The Nile delta. In: Dumont HJ (ed) The Nile: origin, environments, limnology and human use. Springer, New York.
Hossain MB, Runu UH, Sarker MM et al (2021) Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh. Environ Geochem Health 43:4235–4249. https://doi.org/10.1007/s10653-021-00919-w. (PMID: 10.1007/s10653-021-00919-w)
Imam N, Salem G (2023) The potential influence of drains on the recent sediment characteristics and sedimentation rates of Lake Qarun , Western Desert , Egypt. Environ Earth Sci 1–20. https://doi.org/10.1007/s12665-023-11036-5.
Imam N, El-Shamy AS, Abdelaziz GS, Belal DM (2024) Influence of the industrial pollutant on water quality, radioactivity levels, and biological communities in Ismailia Canal, Nile River, Egypt. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-024-32672-9.
Iridoy MC (2017) Sources and distribution of artificial radionuclides in the oceans: from Fukushima to the Mediterranean Sea, Doctorat en Ciència i Tecnologia Ambientals Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona.
Jha SK, Acharya RN, Reddy AVR et al (2002) Heavy metal concentration and distribution in a dated sediment core of Nainital Lake in the Himalayan region. J Environ Monit 4:131–137. https://doi.org/10.1039/b108318j. (PMID: 10.1039/b108318j)
Karuppasamy MP, Qurban MA, Krishnakumar PK et al (2017) Evaluation of toxic elements As, Cd, Cr, Cu, Ni, Pb and Zn in the surficial sediments of the Red Sea (Saudi Arabia). Mar Pollut Bull 119:181–190. https://doi.org/10.1016/j.marpolbul.2017.04.019. (PMID: 10.1016/j.marpolbul.2017.04.019)
Khalil M, El-Gharabawy S (2016) Evaluation of mobile metals in sediments of Burullus Lagoon. Egypt Mar Pollut Bull 109:655–660. https://doi.org/10.1016/j.marpolbul.2016.04.065. (PMID: 10.1016/j.marpolbul.2016.04.065)
Khan R, Islam MS, Tareq ARM, et al (2020) Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh. Environ Nanotechnology Monit Manag 14. https://doi.org/10.1016/j.enmm.2020.100318.
Kostka A, Leśniak A (2020) Spatial and geochemical aspects of heavy metal distribution in lacustrine sediments, using the example of Lake Wigry (Poland). Chemosphere 240. https://doi.org/10.1016/j.chemosphere.2019.124879.
Kostka A, Leśniak A (2021) Natural and anthropogenic origin of metals in lacustrine sediments; assessment and consequences—a case study of wigry lake (Poland). Minerals 11:1–22. https://doi.org/10.3390/min11020158. (PMID: 10.3390/min11020158)
Kowalska J, Mazurek R, Gąsiorek M et al (2016) Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environ Pollut 218:1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053. (PMID: 10.1016/j.envpol.2016.08.053)
Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–a review. Environ Geochem Health 40:2395–2420. https://doi.org/10.1007/s10653-018-0106-z. (PMID: 10.1007/s10653-018-0106-z)
Krishnan K, Saion EB, Yap CK et al (2022) Determination of trace elements in sediments samples by using neutron activation analysis. J Exp Biol Agric Sci 10:21–31. https://doi.org/10.18006/2022.10(1).21.31. (PMID: 10.18006/2022.10(1).21.31)
Kumar A, Rout S, Chopra MK et al (2014) Modeling of 137Cs migration in cores of marine sediments of Mumbai Harbor Bay. J Radioanal Nucl Chem 301:615–626. https://doi.org/10.1007/s10967-014-3116-z. (PMID: 10.1007/s10967-014-3116-z)
Kumar P, Meena NK, Diwate P et al (2019) The heavy metal contamination history during ca 1839–2003 AD from Renuka Lake of Lesser Himalaya, Himachal Pradesh, India. Environ Earth Sci 78:1–14. https://doi.org/10.1007/s12665-019-8519-2. (PMID: 10.1007/s12665-019-8519-2)
Lépy MC, Pearce A, Sima O (2015) Uncertainties in gamma-ray spectrometry. Metrologia 52:S123–S145. https://doi.org/10.1088/0026-1394/52/3/S123. (PMID: 10.1088/0026-1394/52/3/S123)
Li F, Huang J, Zeng G et al (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochemical Explor 132:75–83. https://doi.org/10.1016/j.gexplo.2013.05.007. (PMID: 10.1016/j.gexplo.2013.05.007)
Li K, Liu E, Zhang E et al (2017) Historical variations of atmospheric trace metal pollution in Southwest China: Reconstruction from a 150-year lacustrine sediment record in the Erhai Lake. J Geochemical Explor 172:62–70. https://doi.org/10.1016/j.gexplo.2016.10.009. (PMID: 10.1016/j.gexplo.2016.10.009)
Li S, Sun W, Chen R et al (2022) A historical record of trace metal deposition in northeastern Qinghai - Tibetan Plateau for the last two centuries. Environ Sci Pollut Res 29:24716–24725. (PMID: 10.1007/s11356-021-17618-9)
Li Y, Schoonmaker JE (2014) 9.1 - Chemical composition and mineralogy of marine sediments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 1–32.
Lin H, Liu J, Dong Y et al (2018) Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environ Sci Pollut Res 25:17820–17829. https://doi.org/10.1007/s11356-018-1785-9. (PMID: 10.1007/s11356-018-1785-9)
Lin W, Yu K, Wang Y et al (2019) Radioactive level of coral reefs in the South China Sea. Mar Pollut Bull 142:43–53. https://doi.org/10.1016/j.marpolbul.2019.03.030. (PMID: 10.1016/j.marpolbul.2019.03.030)
Loan BTT, Nhon DH, Ve ND, et al (2023) Assessment of the distribution and ecological risks of heavy metals in coastal sediments in Vietnam’s Mong Cai area. Environ Monit Assess 195. https://doi.org/10.1007/s10661-022-10779-1.
Man X, Huang H, Chen F, et al (2022) Anthropogenic impacts on the temporal variation of heavy metals in Daya Bay (South China). Mar Pollut Bull 185. https://doi.org/10.1016/j.marpolbul.2022.114209.
Negm AM, Bek MA, Abdel-Fattah S (2019) Egyptian coastal lakes and wetlands : Part II climate change and biodiversity. In: Abdelazim M. Negm, Mohamed Ali Bek SA-F (eds) The Handbo. Springer Nature Switzerland AG 2019, p 6221.
Palani B, Vasudevan S, Ramkumar T et al (2023) Determination of sedimentation rates and life of Kodaikanal Lake, South India, using radiometric dating (210Pb and 137Cs ) techniques. Environ Earth Sci. https://doi.org/10.1007/s12665-023-10896-1. (PMID: 10.1007/s12665-023-10896-1)
Pan LB, Ma J, Wang XL, Hou H (2016) Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere 148:248–254. https://doi.org/10.1016/j.chemosphere.2015.12.049. (PMID: 10.1016/j.chemosphere.2015.12.049)
Pappa FK, Tsabaris C, Patiris DL et al (2018) Historical trends and assessment of radionuclides and heavy metals in sediments near an abandoned mine, Lavrio, Greece. Environ Sci Pollut Res 25:30084–30100. https://doi.org/10.1007/s11356-018-2984-0. (PMID: 10.1007/s11356-018-2984-0)
Pappa FK, Tsabaris C, Patiris DL et al (2019) Temporal investigation of radionuclides and heavy metals in a coastal mining area at Ierissos Gulf, Greece. Environ Sci Pollut Res 26:27457–27469. https://doi.org/10.1007/s11356-019-05921-5. (PMID: 10.1007/s11356-019-05921-5)
Perumal K, Antony J, Muthuramalingam S (2021) Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India. Environ Sci Eur 33. https://doi.org/10.1186/s12302-021-00501-2.
Putyrskaya V, Klemt E, Röllin S et al (2015) Dating of sediments from four Swiss prealpine lakes with 210Pb determined by gamma-spectrometry: progress and problems. J Environ Radioact 145:78–94. https://doi.org/10.1016/j.jenvrad.2015.03.028. (PMID: 10.1016/j.jenvrad.2015.03.028)
Ramos-Lerate I, Barrera M, Ligero RA, Casas-Ruiz M (1998) A new method for gamma-efficiency calibration of voluminal samples in cylindrical geometry. J Environ Radioact 38:47–57. (PMID: 10.1016/S0265-931X(97)00021-0)
Rasul S, Kajal AM, Khan A (2018) Quantifying uncertainty in analytical measurements. J Bangladesh Acad Sci 41:145–163. https://doi.org/10.3329/jbas.v41i2.35494. (PMID: 10.3329/jbas.v41i2.35494)
Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200. https://doi.org/10.1016/j.gca.2010.12.024. (PMID: 10.1016/j.gca.2010.12.024)
Sarı E, Çağatay MN, Acar D et al (2018) Geochronology and sources of heavy metal pollution in sediments of Istanbul Strait (Bosporus) outlet area, SW Black Sea, Turkey. Chemosphere 205:387–395. https://doi.org/10.1016/j.chemosphere.2018.04.096. (PMID: 10.1016/j.chemosphere.2018.04.096)
Semertzidou P, Piliposian GT, Chiverrell RC, Appleby PG (2019) Long-term stability of records of fallout radionuclides in the sediments of Brotherswater, Cumbria (UK). J Paleolimnol 61:231–249. https://doi.org/10.1007/s10933-018-0055-7. (PMID: 10.1007/s10933-018-0055-7)
Shah C, Banerji US, Chandana KR, Bhushan R (2020) 210Pb dating of recent sediments from the continental shelf of western India: factors influencing sedimentation rates. Environ Monit Assess 192. https://doi.org/10.1007/s10661-020-08415-x.
Shalby A, Elshemy M, Zeidan BA (2020) Assessment of climate change impacts on water quality parameters of Lake Burullus Egypt. Environ Sci Pollut Res 27:32157–32178. https://doi.org/10.1007/s11356-019-06105-x. (PMID: 10.1007/s11356-019-06105-x)
Shetaia SA, Abu Khatita AM, Abdelhafez NA et al (2022) Human-induced sediment degradation of Burullus lagoon, Nile Delta, Egypt: heavy metals pollution status and potential ecological risk. Mar Pollut Bull 178:113566. https://doi.org/10.1016/j.marpolbul.2022.113566. (PMID: 10.1016/j.marpolbul.2022.113566)
Stäger F, Zok D, Schiller AK et al (2023) Disproportionately high contributions of 60 year old weapons-137Cs explain the persistence of radioactive contamination in Bavarian Wild Boars. Environ Sci Technol 57:13601–13611. https://doi.org/10.1021/acs.est.3c03565. (PMID: 10.1021/acs.est.3c03565)
Tylmann W, Bonk A, Goslar T et al (2016) Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: problems and implications. Quat Geochronol 32:1–10. https://doi.org/10.1016/j.quageo.2015.11.004. (PMID: 10.1016/j.quageo.2015.11.004)
Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. https://doi.org/10.1038/nature09440. (PMID: 10.1038/nature09440)
Wang S, Wang Y, Zhang R et al (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654. https://doi.org/10.1016/j.scitotenv.2015.06.035. (PMID: 10.1016/j.scitotenv.2015.06.035)
Wang Q, Sha Z, Wang J et al (2019) Historical changes in the major and tracea elements in the sedimentary records of Lake Qinghai, Qinghai – Tibet Plateau : implications for anthropogenic activities. 3:2093–2111.
Williams JA, Antoine J (2020) Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Mar Pollut Bull 157:111288. https://doi.org/10.1016/j.marpolbul.2020.111288. (PMID: 10.1016/j.marpolbul.2020.111288)
Xu M, Dong X, Yang X et al (2017) Recent sedimentation rates of shallow lakes in the middle and lower reaches of the Yangtze River: patterns, controlling factors and implications for lake management. Water (switzerland) 9:1–18. https://doi.org/10.3390/w9080617. (PMID: 10.3390/w9080617)
Xu Z, Salem A, Chen Z et al (2008) Pb-210 and Cs-137 distribution in Burullus lagoon sediments of Nile river delta, Egypt: sedimentation rate after Aswan High Dam. Front Earth Sci China 2:434–438. https://doi.org/10.1007/s11707-008-0059-0. (PMID: 10.1007/s11707-008-0059-0)
Ye Z, Chen J, Gao L et al (2020) 210Pb dating to investigate the historical variations and identification of different sources of heavy metal pollution in sediments of the Pearl River Estuary Southern China. Mar Pollut Bull 150:110670. https://doi.org/10.1016/j.marpolbul.2019.110670. (PMID: 10.1016/j.marpolbul.2019.110670)
Younis AM (2019) Environmental impacts on Egyptian delta Lakes’ Biodiversity: a case study on Lake Burullus. Handb Environ Chem 72:107–128. https://doi.org/10.1007/698&#95;2017&#95;120. (PMID: 10.1007/698_2017_120)
Zhang XC, Zhang GH, Garbrecht JD, Steiner JL (2015a) Dating sediment in a fast sedimentation reservoir using cesium-137 and lead-210. Soil Sci Soc Am J 79:948–956. https://doi.org/10.2136/sssaj2015.01.0021. (PMID: 10.2136/sssaj2015.01.0021)
Zhang Y, Huo S, Zan F et al (2015b) Historical records of multiple heavy metals from dated sediment cores in Lake Chenghai, China. Environ Earth Sci 74:3897–3906. https://doi.org/10.1007/s12665-014-3858-5. (PMID: 10.1007/s12665-014-3858-5)
فهرسة مساهمة: Keywords: Fallout radionuclides; Gamma spectrometry; Pollution indices; Radiometric dating; Sediment chronology; Sedimentation rates
المشرفين على المادة: 0 (Metals, Heavy)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240716 Latest Revision: 20240716
رمز التحديث: 20240716
DOI: 10.1007/s11356-024-33761-5
PMID: 38866934
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33761-5