دورية أكاديمية

Possible shift in controls of the tropical Pacific surface warming pattern.

التفاصيل البيبلوغرافية
العنوان: Possible shift in controls of the tropical Pacific surface warming pattern.
المؤلفون: Watanabe M; Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan. hiro@aori.u-tokyo.ac.jp., Kang SM; Max Planck Institute for Meteorology, Hamburg, Germany. sarah.kang@mpimet.mpg.de., Collins M; Department of Mathematics and Statistics, University of Exeter, Exeter, UK., Hwang YT; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan., McGregor S; School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia., Stuecker MF; Department of Oceanography & International Pacific Research Center (IPRC), School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA.
المصدر: Nature [Nature] 2024 Jun; Vol. 630 (8016), pp. 315-324. Date of Electronic Publication: 2024 Jun 12.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: Changes in the sea surface temperature (SST) pattern in the tropical Pacific modulate radiative feedbacks to greenhouse gas forcing, the pace of global warming and regional climate impacts. Therefore, elucidating the drivers of the pattern is critically important for reducing uncertainties in future projections. However, the causes of observed changes over recent decades, an enhancement of the zonal SST contrast coupled with a strengthening of the Walker circulation, are still debated. Here we focus on the role of external forcing and review existing mechanisms of the forced response categorized as either an energy perspective that adopts global and hemispheric energy budget constraints or a dynamical perspective that examines the atmosphere-ocean coupled processes. We then discuss their collective and relative contributions to the past and future SST pattern changes and propose a narrative that reconciles them. Although definitive evidence is not yet available, our assessment suggests that the zonal SST contrast has been dominated by strengthening mechanisms in the past, but will shift towards being dominated by weakening mechanisms in the future. Finally, we present opportunities to resolve the model-observations discrepancy regarding the recent trends.
(© 2024. Springer Nature Limited.)
References: IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Coats, S. & Karnauskas, K. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017). (PMID: 10.1002/2017GL074622)
McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014). (PMID: 10.1038/nclimate2330)
Rugenstein, M. et al. Connecting pattern problem and hot model problem. Geophys. Res. Lett. 50, e2023GL105488 (2023). (PMID: 10.1029/2023GL105488)
Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012). (PMID: 10.1007/s00382-010-0977-x)
Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T. & Tatebe, H. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Clim. Change 11, 33–37 (2021). (PMID: 10.1038/s41558-020-00933-3)
Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022). (PMID: 10.1175/JCLI-D-21-0648.1)
Sobel, A. H. et al. Near-term tropical cyclone risk and coupled Earth system model biases. Proc. Natl Acad. Sci. USA 120, e2209631120 (2023). (PMID: 375492741043883710.1073/pnas.2209631120)
Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018). (PMID: 10.1029/2018GL078887)
Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017). (PMID: 29183969574065410.1073/pnas.1714308114)
Zhou, C., Zelinka, M. & Klein, S. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016). (PMID: 10.1038/ngeo2828)
Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: the preeminence of the western Pacific. J. Clim. 32, 5471–5491 (2019). (PMID: 10.1175/JCLI-D-18-0843.1)
Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future 4, 512–522 (2016). (PMID: 31423453668633310.1002/2016EF000376)
Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020). This study carried out a community-based assessment of the equilibrium climate sensitivity, in which the pattern effect on climate feedbacks is thoroughly discussed. (PMID: 33015673752401210.1029/2019RG000678)
Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).
Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021). (PMID: 10.1038/s41558-020-00955-x)
Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015). (PMID: 10.1175/JCLI-D-13-00752.1)
Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Env. 4, 754–769 (2023). (PMID: 10.1038/s43017-023-00486-x)
Chung, E. S., Timmermann, A., Soden, B. J., Ha, K.-J. & John, V. O. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019). (PMID: 10.1038/s41558-019-0446-4)
Olonscheck, D., Rugenstein, M. & Marotzke, J. Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys. Res. Lett. 47, e2019GL086773 (2020). (PMID: 10.1029/2019GL086773)
Wills, R., Dong, Y., Proistosecu, C., Armour, K. & Battisti, D. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022). This study systematically compares the past trends in the zonal SST gradient and the Walker circulation between observations and large-ensemble historical simulations by CMIP5 and CMIP6 climate models. (PMID: 10.1029/2022GL100011)
Lee, S. et al. On the future zonal contrasts of equatorial Pacific climate: perspectives from observations, simulations, and theories. npj Clim. Atmos. Sci. 5, 82 (2022). This is a comprehensive review article on the cause of recent tropical Pacific SST pattern change based on observations, model simulations and theory. (PMID: 10.1038/s41612-022-00301-2)
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019). (PMID: 10.1038/s41558-019-0505-x)
Heede, U., Fedorov, A. & Burls, N. A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Clim. Dyn. 57, 2505–2522 (2021). (PMID: 10.1007/s00382-021-05818-5)
Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004). (PMID: 10.1029/2003GL018747)
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011). (PMID: 10.1038/nclimate1229)
Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013). (PMID: 10.1038/nclimate1863)
Drijfhout, S. S. et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014). (PMID: 10.1002/2014GL061456)
Armour, K. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017). (PMID: 10.1038/nclimate3278)
Hedemann, C., Mauritsen, T., Jungclaus, J. & Marotzke, J. The subtle origins of surface-warming hiatuses. Nat. Clim. Change 7, 336–339 (2017). (PMID: 10.1038/nclimate3274)
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006). This study provides the theoretical argument constraining global mass flux change under global warming using the atmospheric hydrological budget. (PMID: 10.1175/JCLI3990.1)
Li, R. L., Studholme, J. H., Fedorov, A. V. & Storelvmo, T. Precipitation efficiency constraint on climate change. Nat. Clim. Change 12, 642–648 (2022). (PMID: 10.1038/s41558-022-01400-x)
Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4434 (2007). (PMID: 10.1175/JCLI4258.1)
Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010). (PMID: 10.1038/ngeo868)
Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2013). (PMID: 10.1175/JCLI-D-12-00543.1)
Vecchi, G. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006). (PMID: 1667296710.1038/nature04744)
Merlis, T. M. & Schneider, T. Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Clim. 24, 4757–4768 (2011). (PMID: 10.1175/2011JCLI4042.1)
Sandeep, S. et al. Pacific Walker circulation variability in coupled and uncoupled climate models. Clim. Dyn. 43, 103–117 (2014). (PMID: 10.1007/s00382-014-2135-3)
Shrestha, S. & Soden, B. J. Anthropogenic weakening of the atmospheric circulation during the satellite era. Geophys. Res. Lett. 50, e2023GL104784 (2023). (PMID: 10.1029/2023GL104784)
Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023). (PMID: 10.1029/2023GL105332)
Chou, C. & Neelin, J. D. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17, 2688–2701 (2004). (PMID: 10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2)
Wills, R. C., Levine, X. J. & Schneider, T. Local energetic constraints on Walker circulation strength. J. Atmos. Sci. 74, 1907–1922 (2017). (PMID: 10.1175/JAS-D-16-0219.1)
Duffy, M. L. & O’Gorman, P. A. Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. J. Geophys. Res. 128, e2022JD037382 (2023). (PMID: 10.1029/2022JD037382)
Fan, C. S. & Dommenget, D. The weakening of the tropical circulation is caused by the lifting of the tropopause height. Clim. Dyn. https://doi.org/10.1007/s00382-023-06909-1 (2023). (PMID: 10.1007/s00382-023-06909-1)
Kang, S. M., Shin, Y., Kim, H., Xie, S.-P. & Hu, S. Disentangling the mechanisms of equatorial Pacific climate change. Sci. Adv. 9, eadf5059 (2023). (PMID: 371636001017181910.1126/sciadv.adf5059)
Jeevanjee, N. Three rules for the decrease of tropical convection with global warming. J. Adv. Model. Earth Sys. 14, e2022MS003285 (2022). (PMID: 10.1029/2022MS003285)
Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO 2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995). This study is a pioneering work that explored the climate response to an abrupt CO 2 quadrupling and proposed differential evaporative damping as a mechanism that weakens the equatorial Pacific zonal SST gradient. (PMID: 10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2)
Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010). (PMID: 10.1175/2009JCLI3329.1)
Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of war between the ocean thermostat and weaker Walker. J. Clim. 33, 6101–6118 (2020). (PMID: 10.1175/JCLI-D-19-0690.1)
Fu, M. & Fedorov, A. The role of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming. Geophys. Res. Lett. 50, e2023GL105061 (2023). (PMID: 10.1029/2023GL105061)
Kang, S. M. et al. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008). (PMID: 10.1175/2007JCLI2146.1)
Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014). (PMID: 2518689910.1038/nature13636)
Kang, S. M. Extratropical influence on the tropical rainfall distribution. Curr. Clim. Change Rep. 6, 24–36 (2020). (PMID: 10.1007/s40641-020-00154-y)
Kang, S. M. et al. Walker circulation response to extratropical radiative forcing. Sci. Adv. 6, eabd3021 (2020). (PMID: 33219035767915610.1126/sciadv.abd3021)
Hsiao, W. et al. The role of clouds in shaping tropical Pacific response pattern to extratropical thermal forcing. Geophys. Res. Lett. 49, e2022GL098023 (2022). (PMID: 10.1029/2022GL098023)
Tseng, H.-Y. et al. Fast and slow responses of the tropical Pacific to radiative forcing in northern high latitudes. J. Clim. 36, 5337–5349 (2023). (PMID: 10.1175/JCLI-D-22-0622.1)
Kang, S. M., Park, K., Hwang, Y.-T. & Hsiao, W.-T. Contrasting tropical climate response pattern to localized thermal forcing over different ocean basins. Geophys. Res. Lett. 45, 12544–12552 (2018). (PMID: 10.1029/2018GL080697)
Hu, S. & Fedorov, A. V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change 8, 798–802 (2018). (PMID: 10.1038/s41558-018-0248-0)
Donohoe, A. et al. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013). (PMID: 10.1175/JCLI-D-12-00467.1)
Kang, S. M. et al. Global impacts of recent Southern Ocean cooling. Proc. Natl Acad. Sci. USA 120, e2300881120 (2023). This study demonstrates the recent Southern Ocean cooling impact on the eastern tropical Pacific SST cooling using pacemaker experiments. (PMID: 374595361037261710.1073/pnas.2300881120)
Dong, Y. et al. Two-way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic feedback. J. Clim. 35, 2667–2682 (2022). (PMID: 10.1175/JCLI-D-22-0080.1)
Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021). (PMID: 10.1038/s43017-021-00204-5)
Kim, H., Kang, S. M., Kay, J. E. & Xie, S.-P. Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proc. Nat. Acad. Sci. USA 34, e2200514119 (2022). (PMID: 10.1073/pnas.2200514119)
Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. 28, 8219–8246 (2015). (PMID: 10.1175/JCLI-D-15-0148.1)
Hwang, Y. ‐T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013). (PMID: 10.1002/grl.50502)
Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y. & Deser, C. Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proc. Nat. Acad. Sci. USA 121, e2315124121 (2024). (PMID: 382528271083504510.1073/pnas.2315124121)
Smith, D. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016). (PMID: 10.1038/nclimate3058)
Takahashi, C. & Watanabe, M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Clim. Change 6, 768–772 (2016). (PMID: 10.1038/nclimate2996)
Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO 2 increase. Nat. Clim. Change 11, 696–703 (2021). (PMID: 10.1038/s41558-021-01101-x)
Kang, S. M. et al. Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Sci. Bull. 66, 2405–2411 (2021). (PMID: 10.1016/j.scib.2021.07.013)
Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource. J. Clim. 33, 7835–7858 (2020). (PMID: 10.1175/JCLI-D-20-0123.1)
Diao, C., Xu, Y. & Xie, S.-P. Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings. Atmos. Chem. Phys. 21, 18499–18518 (2021). (PMID: 10.5194/acp-21-18499-2021)
Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969). (PMID: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2)
Jin, F.-F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño Southern Oscillation. Science 274, 76–78 (1996). (PMID: 10.1126/science.274.5284.76)
Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A, 340–350 (1994). (PMID: 10.3402/tellusa.v46i4.15484)
Planton, Y. Y. et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Am. Meteor. Soc. 102, E193–E217 (2021). (PMID: 10.1175/BAMS-D-19-0337.1)
Clement, A., Seager, R., Cane, M. & Zebiak, S. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996). This study proposed the ocean thermostat mechanism that increases the equatorial Pacific zonal SST gradient to uniform thermal forcing using a simple coupled model. (PMID: 10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2)
Sun, D.-Z. & Liu, Z. Dynamic ocean–atmosphere coupling: a thermostat for the tropics. Science 272, 1148–1150 (1996). (PMID: 866244710.1126/science.272.5265.1148)
Luo, Y., Lu, J., Liu, F. & Garuba, O. The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Clim. 30, 2811–2827 (2017). (PMID: 10.1175/JCLI-D-16-0454.1)
Zeller, M., McGregor, S., van Sebille, E., Capotondi, A. & Spence, P. Subtropical-tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Clim. Dyn. 56, 1131–1144 (2021). (PMID: 10.1007/s00382-020-05524-8)
Liu, Z. Y. The role of ocean in the response of tropical climatology to global warming: the west–east SST contrast. J. Clim. 11, 864–875 (1998). (PMID: 10.1175/1520-0442(1998)011<0864:TROOIT>2.0.CO;2)
Kleeman, R., McCreary, J. P. & Klinger, B. A. A mechanism for generation ENSO decadal variability. Geophys. Res. Lett. 26, 2038–2049 (1999). (PMID: 10.1029/1999GL900352)
Gu, D. & Philander, S. G. H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 17, 553–564 (1997).
Imada, Y., Tatebe, H., Watanabe, M., Ishii, M. & Kimoto, M. South Pacific influence on the termination of El Niño in 2014. Sci. Rep. 6, 30341 (2016). (PMID: 27464581496461610.1038/srep30341)
Kilpatrick, T., Schneider, N. & Di Lorenzo, E. Generation of low-frequency spiciness variability in the thermocline. J. Phys. Oceanogr. 41, 365–377 (2011). (PMID: 10.1175/2010JPO4443.1)
England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020). (PMID: 10.1038/s41561-020-0546-9)
McPhaden, M. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415, 603–608 (2002). (PMID: 1183293610.1038/415603a)
Thomas, M. D. & Fedorov, A. V. The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Clim. 30, 5885–5900 (2017). (PMID: 10.1175/JCLI-D-16-0819.1)
Wang, D. & Cane, M. Pacific shallow meridional overturning circulation in a warming climate. J. Clim. 24, 6424–6439 (2011). (PMID: 10.1175/2011JCLI4100.1)
Graffino, G., Farneti, R. & Kucharski, F. Low-frequency variability of the Pacific subtropical cells as reproduced by coupled models and ocean reanalyses. Clim. Dyn. 56, 3231–3254 (2021). (PMID: 10.1007/s00382-021-05639-6)
Stellema, A., Sen Gupta, A., Taschetto, A. S. & Feng, M. Pacific equatorial undercurrent: mean state, sources, and future changes across models. Front. Clim. 4, 933091 (2022). (PMID: 10.3389/fclim.2022.933091)
Stuecker, M. F. et al. Strong remote control of future equatorial warming by off-equatorial forcing. Nat. Clim. Change 10, 124–129 (2020). (PMID: 10.1038/s41558-019-0667-6)
Cai, W. et al. Pantropical climate interactions. Science 363, eeav4236 (2019). This is a comprehensive review paper on the tropical basin coupling and its role in the tropical Pacific climate variability. (PMID: 10.1126/science.aav4236)
McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H. & Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 8, 493–498 (2018). (PMID: 10.1038/s41558-018-0163-4)
Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016). (PMID: 10.1038/nclimate2840)
Kajtar, J. B., Santoso, A., McGregor, S., England, M. H. & Baillie, Z. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim. Dyn. 50, 1471–1484 (2017). (PMID: 10.1007/s00382-017-3699-5)
Ferster, B. S., Fedorov, A. V., Guilyardi, E. & Mignot, J. The effect of Indian Ocean temperature on the Pacific trade winds and ENSO. Geophys. Res. Lett. 50, e2023GL103230 (2023). (PMID: 10.1029/2023GL103230)
Dhame, S., Taschetto, A. S., Santoso, A. & Meissner, K. J. Indian Ocean warming modulates global atmospheric circulation trends. Clim. Dyn. 55, 2053–2073 (2020). (PMID: 10.1007/s00382-020-05369-1)
Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012). (PMID: 23112174350323510.1073/pnas.1210239109)
Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000). (PMID: 1085620510.1126/science.288.5473.1997)
Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteor. Soc. 96, 921–938 (2015). (PMID: 10.1175/BAMS-D-13-00117.1)
Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018). This paper reviews the physical processes involved in El Niño–Southern Oscillation and provides a synopsis of understanding of the ENSO complexity. (PMID: 3004607010.1038/s41586-018-0252-6)
Jin, F.-F., An, S.-I., Timmermann, A. & Zhao, J. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett. 30, 1120 (2003). (PMID: 10.1029/2002GL016356)
Sun, D.-Z. & Zhang, T. A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett. 33, L07710 (2006). (PMID: 10.1029/2005GL025296)
Kohyama, T. & Hartmann, D. L. Nonlinear ENSO warming suppression (NEWS). J. Clim. 30, 4227–4251 (2017). (PMID: 10.1175/JCLI-D-16-0541.1)
Hayashi, M., Jin, F.-F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 4230 (2020). (PMID: 32859891745573010.1038/s41467-020-17983-y)
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014). (PMID: 10.1038/nclimate2100)
Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013). (PMID: 2412143910.1038/nature12580)
Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015). (PMID: 10.1038/ngeo2571)
Yun, K. S. et al. Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021). (PMID: 10.1038/s43247-021-00108-8)
Watanabe, M., Kamae, Y. & Kimoto, M. Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett. 41, 3227–3232 (2014). (PMID: 10.1002/2014GL059692)
Kim, H., Timmermann, A., Lee, S.-S. & Schloesser, F. Rainfall and salinity effects on future Pacific climate change. Earth’s Future 11, e2022EF003457 (2023). (PMID: 10.1029/2022EF003457)
Ham, Y. G. et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 622, 301–307 (2023). (PMID: 376488611056756210.1038/s41586-023-06474-x)
Heede, U. K. & Fedorov, A. V. Colder eastern equatorial Pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023). (PMID: 10.1029/2022GL101020)
Hartmann, D. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Soc. USA 119, e2207889119 (2022). (PMID: 10.1073/pnas.2207889119)
Zhang, L., Delworth, T. L., Cooke, W. & Yang, X. Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Clim. Change 9, 59–65 (2019). (PMID: 10.1038/s41558-018-0350-3)
Dong, Y., Pauling, A. G., Sadai, S. & Armour, K. C. Antarctic ice-sheet meltwater reduces transient warming and climate sensitivity through the sea-surface temperature pattern effect. Geophys. Res. Lett. 49, e2022GL101249 (2022). (PMID: 10.1029/2022GL101249)
Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014). (PMID: 2470085610.1126/science.1246172)
Fedorov, A., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 975–980 (2015). (PMID: 10.1038/ngeo2577)
Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019). (PMID: 10.1029/2019GL083802)
Wycech, J. B., Gill, E., Rajagopalan, B., Marchitto, T. M. Jr & Molnar, P. H. Multiproxy reduced-dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. Paleoceanogr. Paleoclim. 35, e2019PA003685 (2020). (PMID: 10.1029/2019PA003685)
Zhong, S., Ying, J. & Collins, M. Sources of uncertainty in the time of emergence of tropical Pacific climate change signal: role of internal variability. J. Clim. 36, 2535–2549 (2023). (PMID: 10.1175/JCLI-D-22-0554.1)
Falster, G., Konecky, B., Coats, S. & Stevenson, S. Forced changes in the Pacific Walker circulation over the past millennium. Nature 622, 93–100 (2023). (PMID: 376125111055083010.1038/s41586-023-06447-0)
Yim, B. Y., Yeh, S.-W., Song, H.-J., Dommenget, D. & Sohn, B. J. Land-sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophys. Res. Lett. 44, 5854–586 (2017). (PMID: 10.1002/2017GL073778)
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018). (PMID: 3045542110.1038/s41586-018-0712-z)
Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R. M. & Polland, D. Antarctic iceberg impacts on future Southern Hemisphere climate. Nat. Clim. Change 9, 672–677 (2019). (PMID: 10.1038/s41558-019-0546-1)
Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023). (PMID: 3699119110.1038/s41586-023-05762-w)
Tian, Y., Hu, S. & Deser, C. Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming. Nat. Commun. 14, 3508 (2023). (PMID: 373165311026719310.1038/s41467-023-39204-y)
Yamaguchi, R. et al. Persistent ocean anomalies as a response to Northern Hemisphere heating induced by biomass burning variability. J. Clim. 36, 8225–8241 (2023). (PMID: 10.1175/JCLI-D-23-0090.1)
Ying, J., Huang, P., Lian, T. & Tan, H. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Clim. Dyn. 52, 1805–1818 (2019). (PMID: 10.1007/s00382-018-4219-y)
Bayr, T. et al. Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim. Dyn. 53, 155–172 (2019). (PMID: 10.1007/s00382-018-4575-7)
Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021). (PMID: 10.1038/s41558-021-01132-4)
Yeager, S. G. et al. Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system. npj Clim. Atmos. Sci. 6, 107 (2023). (PMID: 10.1038/s41612-023-00434-y)
Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022). (PMID: 10.1038/s41558-022-01384-8)
Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013). (PMID: 10.1038/ngeo1792)
Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015). (PMID: 10.1175/JCLI-D-14-00545.1)
Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002). (PMID: 1222667710.1038/nature01092)
Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).
Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987). (PMID: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2)
Karnauskas, K. B. A simple coupled model of the wind–evaporation–SST feedback with a role for stability. J. Clim. 35, 2149–2160 (2022). (PMID: 10.1175/JCLI-D-20-0895.1)
Yang, L., Xie, S.-P., Shen, S. S. P., Liu, J. & Hwang, Y. Low cloud–SST feedback over the subtropical northeast Pacific and the remote effect on ENSO variability. J. Clim. 36, 441–452 (2022). (PMID: 10.1175/JCLI-D-21-0902.1)
Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010). (PMID: 10.1175/2010JCLI3519.1)
Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A. & DiNezio, P. Does disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and cooling? J. Clim. 35, 1787–1807 (2022). (PMID: 10.1175/JCLI-D-21-0391.1)
Hartmann, D. L., Moy, L. A. & Fu, Q. Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14, 4495–4511 (2001). (PMID: 10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2)
Yoshimori, M., Lambert, F. H., Webb, M. J. & Andrews, T. Fixed anvil temperature feedback - positive, zero or negative? J. Clim. 33, 2719–2739 (2020). (PMID: 10.1175/JCLI-D-19-0108.1)
Clement, A. C., Burgman, R. & Norris, J. R. Observational and model evidence for positive low-level cloud feedback. Science 325, 460–464 (2009). (PMID: 1962886510.1126/science.1171255)
Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change 11, 501–507 (2021). (PMID: 10.1038/s41558-021-01039-0)
Ying, J., Huang, P. & Huang, R. Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv. Atmos. Sci. 33, 433–441 (2016). (PMID: 10.1007/s00376-015-5184-6)
Erfani, E. & Burls, N. J. The strength of low-cloud feedbacks and tropical climate: a CESM sensitivity study. J. Clim. 32, 2497–2516 (2019). (PMID: 10.1175/JCLI-D-18-0551.1)
Park, C., Kang, S. M., Stuecker, M. F. & Jin, F.-F. Distinct surface warming response over the western and eastern equatorial Pacific to radiative forcing. Geophys. Res. Lett. 49, e2021GL095829 (2022). (PMID: 10.1029/2021GL095829)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240613
رمز التحديث: 20240614
DOI: 10.1038/s41586-024-07452-7
PMID: 38867130
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07452-7