دورية أكاديمية

Microbial communities, antibiotic resistance genes, and virulence factors in urinary infectious stone-associated urinary tract infections.

التفاصيل البيبلوغرافية
العنوان: Microbial communities, antibiotic resistance genes, and virulence factors in urinary infectious stone-associated urinary tract infections.
المؤلفون: Li Z; Center for Translational Medicine Research, Shandong Provincial Third Hospital, Shandong University, Jinan, China., Zhang Z; Urology Department, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China., Yu P; Urology Department, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.; Urology Department, Weihai Municipal Hospital, Shandong University, Weihai, China., Ni Y; Urology Department, Shandong Provincial Third Hospital, Shandong University, Jinan, China. nyl_cabin@163.com.
المصدر: Urolithiasis [Urolithiasis] 2024 Jun 14; Vol. 52 (1), pp. 88. Date of Electronic Publication: 2024 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101602699 Publication Model: Electronic Cited Medium: Internet ISSN: 2194-7236 (Electronic) Linking ISSN: 21947228 NLM ISO Abbreviation: Urolithiasis Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, [2013]-
مواضيع طبية MeSH: Urinary Tract Infections*/microbiology , Urinary Tract Infections*/drug therapy , Virulence Factors*/genetics, Humans ; Anti-Bacterial Agents/therapeutic use ; Anti-Bacterial Agents/pharmacology ; Microbiota/drug effects ; Microbiota/genetics ; Drug Resistance, Bacterial/genetics ; Urinary Calculi/microbiology ; Urinary Calculi/genetics ; Female ; Male ; Drug Resistance, Microbial/genetics
مستخلص: Urinary infectious stones are challenging due to bacterial involvement, necessitating a comprehensive understanding of these conditions. Antibiotic-resistant urease-producing bacteria further complicate clinical management. In this study, analysis of urine and stone samples from urinary tract infection (UTI) patients revealed microbial shifts, gene enrichment in stones, and metabolic pathway disparities; antibiotic resistance gene trends were phylum-specific, urease-producing bacteria are at risk of acquiring AMR carried by Enterobacteriaceae under antibiotic, emphasizing potential AMR dissemination between them; Correlations of key pathogenic species in kidney stone and urine microbial communities highlight the need for targeted therapeutic strategies to manage complexities in UTIs; Stones and urine contain a variety of deleterious genes even before antibiotic use, and piperacillin/tazobactam better reduced the abundance of antibiotic resistance genes in stones and urine. The presence of diverse antibiotic resistance and virulence genes underscores challenges in clinical management and emphasizes the need for effective treatment strategies to mitigate risks associated with UTIs and urinary infectious stone formation. Ongoing research is vital for advancing knowledge and developing innovative approaches to address these urological conditions.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432. (PMID: 10.1038/nrmicro3432258537784457377)
Dornbier RA, Bajic P, Van Kuiken M et al (2020) The microbiome of calcium-based urinary stones. Urolithiasis 48:191–199. https://doi.org/10.1007/s00240-019-01146-w. (PMID: 10.1007/s00240-019-01146-w31240349)
Bichler K-H, Eipper E, Naber K et al (2002) Urinary infection stones. Int J Antimicrob Agents 19:488–498. https://doi.org/10.1016/s0924-8579(02)00088-2. (PMID: 10.1016/s0924-8579(02)00088-212135839)
Scales CD, Tasian GE, Schwaderer AL et al (2016) Urinary stone disease: advancing knowledge, patient care, and population health. Clin J Am Soc Nephrol CJASN 11:1305–1312. https://doi.org/10.2215/CJN.13251215. (PMID: 10.2215/CJN.1325121526964844)
Shen C, Zhu Q, Dong F et al (2021) Identifying two novel clusters in calcium oxalate stones with urinary tract infection using 16S rDNA sequencing. Front Cell Infect Microbiol 11:723781. https://doi.org/10.3389/fcimb.2021.723781. (PMID: 10.3389/fcimb.2021.723781348690538635737)
Das P, Gupta G, Velu V et al (2017) Formation of struvite urinary stones and approaches towards the inhibition-A review. Biomed Pharmacother Biomedecine Pharmacother 96:361–370. https://doi.org/10.1016/j.biopha.2017.10.015. (PMID: 10.1016/j.biopha.2017.10.015)
Marien T, Miller NL (2015) Treatment of the infected stone. Urol Clin North Am 42:459–472. https://doi.org/10.1016/j.ucl.2015.05.009. (PMID: 10.1016/j.ucl.2015.05.00926475943)
Institute of Urology and Human Reproductive Health of the I.M. Sechenov First Moscow State Medical University, Moscow, Russia, Saenko VS, Vinarov AZ et al (2022) Prevalence of urinary stone types in children and adolescents in Russia. Pediatr J Named GN Speransky 101:15–22. https://doi.org/10.24110/0031-403X-2022-101-6-15-22.
Roll W, Faust A, Hermann S, Schäfers M (2023) Infection imaging: focus on new tracers? J Nucl Med off Publ Soc Nucl Med 64:59S–67S. https://doi.org/10.2967/jnumed.122.264869. (PMID: 10.2967/jnumed.122.264869)
Liu J, Huang L, Luo M, Xia X (2019) Bacterial translocation in acute pancreatitis. Crit Rev Microbiol 45:539–547. https://doi.org/10.1080/1040841X.2019.1621795. (PMID: 10.1080/1040841X.2019.162179531851854)
Tortora SC, Agurto MG, Martello LA (2023) The oral-gut-circulatory axis: from homeostasis to colon cancer. Front Cell Infect Microbiol 13:1289452. https://doi.org/10.3389/fcimb.2023.1289452. (PMID: 10.3389/fcimb.2023.12894523802926710663299)
Valbuena G, Walker DH (2006) The endothelium as a target for infections. Annu Rev Pathol 1:171–198. https://doi.org/10.1146/annurev.pathol.1.110304.100031. (PMID: 10.1146/annurev.pathol.1.110304.10003118039112)
Melican K, Dumenil G (2012) Vascular colonization by Neisseria meningitidis. Curr Opin Microbiol 15:50–56. https://doi.org/10.1016/j.mib.2011.10.008. (PMID: 10.1016/j.mib.2011.10.00822185907)
Nazmy M, Abdalla MA, Mahmoud A, Aziz AE (2022) Epidemiology of pediatric urinary tract stones in Assiut Urology and Nephrology Hospital and its management. Egypt J Surg.
Da Cruz Machado J, Miguel Renteria J, Medeiros Do Nascimento M et al (2024) Association between urinary lithiasis, other than struvite by crystallography and non-ureolytic bacteria. Urolithiasis 52:28. https://doi.org/10.1007/s00240-023-01525-4. (PMID: 10.1007/s00240-023-01525-438244096)
Mehta M, Goldfarb DS, Nazzal L (2016) The role of the microbiome in kidney stone formation. Int J Surg Lond Engl 36:607–612. https://doi.org/10.1016/j.ijsu.2016.11.024. (PMID: 10.1016/j.ijsu.2016.11.024)
Joshi S, Goldfarb DS (2019) The use of antibiotics and risk of kidney stones. Curr Opin Nephrol Hypertens 28:311–315. https://doi.org/10.1097/MNH.0000000000000510. (PMID: 10.1097/MNH.0000000000000510311457056662656)
Wang Z, Zhang Y, Zhang J et al (2021) Recent advances on the mechanisms of kidney stone formation (review). Int J Mol Med 48:149. https://doi.org/10.3892/ijmm.2021.4982. (PMID: 10.3892/ijmm.2021.4982341323618208620)
Rauturier C, Machon C, Demède D et al (2021) Composition of urinary stones in children: clinical and metabolic determinants in a French tertiary care center. Eur J Pediatr 180:3555–3563. https://doi.org/10.1007/s00431-021-04151-7. (PMID: 10.1007/s00431-021-04151-734165592)
Prywer J, Mielniczek-Brzóska E (2020) Effect of (–)-Epicatechin on poorly crystalline and amorphous precipitate. The role of green tea compound in the formation of infectious urinary stones. Cryst Growth Des 20:148–156. https://doi.org/10.1021/acs.cgd.9b00936. (PMID: 10.1021/acs.cgd.9b00936)
Miller AW, Penniston KL, Fitzpatrick K et al (2022) Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 19:695–707. https://doi.org/10.1038/s41585-022-00647-5. (PMID: 10.1038/s41585-022-00647-536127409)
Delcaru C, Podgoreanu P, Alexandru I et al (2017) Antibiotic resistance and virulence phenotypes of recent bacterial strains isolated from urinary tract infections in elderly patients with prostatic disease. Pathogens 6:22. https://doi.org/10.3390/pathogens6020022. (PMID: 10.3390/pathogens6020022285617945488656)
(2021) antibacterial agents in clinical and preclinical development: an overview and analysis. https://www.who.int/publications-detail-redirect/9789240047655 . Accessed 20 Feb 2024.
Tasian GE, Jemielita T, Goldfarb DS et al (2018) Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol JASN 29:1731–1740. https://doi.org/10.1681/ASN.2017111213. (PMID: 10.1681/ASN.201711121329748329)
Neugent ML, Hulyalkar NV, Nguyen VH et al (2020) Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio 11. https://doi.org/10.1128/mbio.00218-20 . 10.1128/mbio.00218 – 20.
Ferraro PM, Curhan GC, Gambaro G, Taylor EN (2019) Antibiotic use and risk of incident kidney stones in female nurses. Am J Kidney Dis off J Natl Kidney Found 74:736–741. https://doi.org/10.1053/j.ajkd.2019.06.005. (PMID: 10.1053/j.ajkd.2019.06.005)
Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660. https://doi.org/10.1038/nrurol.2010.190. (PMID: 10.1038/nrurol.2010.19021139641)
Wagenlehner FME, Bjerklund Johansen TE, Cai T et al (2020) Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol 17:586–600. https://doi.org/10.1038/s41585-020-0362-4. (PMID: 10.1038/s41585-020-0362-432843751)
Duran Ramirez JM, Gomez J, Obernuefemann CLP et al (2022) Semi-quantitative assay to measure urease activity by urinary catheter-associated uropathogens. Front Cell Infect Microbiol 12:859093. https://doi.org/10.3389/fcimb.2022.859093. (PMID: 10.3389/fcimb.2022.859093353926118980526)
Flannery EL, Mody L, Mobley HLT (2009) Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 77:4887–4894. https://doi.org/10.1128/IAI.00705-09. (PMID: 10.1128/IAI.00705-09196871972772549)
Espinosa-Ortiz EJ, Eisner BH, Lange D, Gerlach R (2019) Current insights into the mechanisms and management of infection stones. Nat Rev Urol 16:35–53. https://doi.org/10.1038/s41585-018-0120-z. (PMID: 10.1038/s41585-018-0120-z30470787)
Chakkour M, Hammoud Z, Farhat S et al (2024) Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front Microbiol 15:1383618. https://doi.org/10.3389/fmicb.2024.1383618. (PMID: 10.3389/fmicb.2024.13836183864663311026637)
Flores C, Ling J, Loh A et al (2023) A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci Adv 9:eadi9834. https://doi.org/10.1126/sciadv.adi9834. (PMID: 10.1126/sciadv.adi98343793918310631729)
Torzewska A, Różalski A (2014) In vitro studies on the role of glycosaminoglycans in crystallization intensity during infectious urinary stones formation. APMIS Acta Pathol Microbiol Immunol Scand 122:505–511. https://doi.org/10.1111/apm.12191. (PMID: 10.1111/apm.12191)
Reid DG, Jackson GJ, Duer MJ, Rodgers AL (2011) Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J Urol 185:725–730. https://doi.org/10.1016/j.juro.2010.09.075. (PMID: 10.1016/j.juro.2010.09.07521168873)
Jou Y-C, Fang C-Y, Chen S-Y et al (2012) Proteomic study of renal uric acid stone. Urology 80:260–266. https://doi.org/10.1016/j.urology.2012.02.019. (PMID: 10.1016/j.urology.2012.02.01922516363)
Talham DR, Backov R, Benitez IO et al (2006) Role of lipids in urinary stones: studies of calcium oxalate precipitation at phospholipid langmuir monolayers. Langmuir ACS J Surf Colloids 22:2450–2456. https://doi.org/10.1021/la052503u. (PMID: 10.1021/la052503u)
Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072. https://doi.org/10.1046/j.1523-1755.2002.00676.x. (PMID: 10.1046/j.1523-1755.2002.00676.x12427130)
Bader MS, Loeb M, Brooks AA (2017) An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med 129:242–258. https://doi.org/10.1080/00325481.2017.1246055. (PMID: 10.1080/00325481.2017.124605527712137)
Kaye KS, Bhowmick T, Metallidis S et al (2018) Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA 319:788–799. https://doi.org/10.1001/jama.2018.0438. (PMID: 10.1001/jama.2018.0438294860415838656)
معلومات مُعتمدة: 202204050772 Shandong Province Medicine and Health Science and Technology Development Program Project; jqrc010 Outstanding Young Talent Project of Shandong Provincial Third Hospital
فهرسة مساهمة: Keywords: Antibiotic resistance gene; Microbiome; Urinary stones; Urinary tract infections; Urine
المشرفين على المادة: 0 (Virulence Factors)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20240614 Date Completed: 20240614 Latest Revision: 20240614
رمز التحديث: 20240614
DOI: 10.1007/s00240-024-01588-x
PMID: 38874649
قاعدة البيانات: MEDLINE
الوصف
تدمد:2194-7236
DOI:10.1007/s00240-024-01588-x