دورية أكاديمية

Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway.

التفاصيل البيبلوغرافية
العنوان: Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway.
المؤلفون: Wang J; Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China., Ye X; School of Medicine, Ningbo University, Ningbo, 315211, P. R. China., Wang Y; Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China. 89684349@qq.com.
المصدر: Journal of molecular histology [J Mol Histol] 2024 Aug; Vol. 55 (4), pp. 437-454. Date of Electronic Publication: 2024 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Netherlands Country of Publication: Netherlands NLM ID: 101193653 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1567-2387 (Electronic) Linking ISSN: 15672379 NLM ISO Abbreviation: J Mol Histol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht, The Netherlands : Springer Netherlands
Original Publication: Dordrecht, The Netherlands : Kluwer Academic Publishers, 2004-
مواضيع طبية MeSH: Myocardial Infarction*/metabolism , Myocardial Infarction*/drug therapy , Myocardial Infarction*/pathology , Early Growth Response Protein 1*/metabolism , Early Growth Response Protein 1*/genetics , p38 Mitogen-Activated Protein Kinases*/metabolism , Proto-Oncogene Proteins c-fos*/metabolism , Proto-Oncogene Proteins c-fos*/genetics , Myocytes, Cardiac*/metabolism , Myocytes, Cardiac*/drug effects, Animals ; Rats ; Male ; Apoptosis/drug effects ; Ventricular Remodeling/drug effects ; Drugs, Chinese Herbal/pharmacology ; Drugs, Chinese Herbal/therapeutic use ; Inflammation/drug therapy ; Inflammation/metabolism ; Inflammation/pathology ; Rats, Sprague-Dawley ; Fibrosis ; Cell Line ; Signal Transduction/drug effects ; Disease Models, Animal ; MAP Kinase Signaling System/drug effects
مستخلص: Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Bageghni SA, Hemmings KE, Zava N et al (2018) Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism. FASEB J 32(9):4941–4954. (PMID: 10.1096/fj.201701455RR296017816629170)
Breitling LP, Koenig W, Fischer M, Mallat Z, Hengstenberg C, Rothenbacher D, Brenner H (2011) Type II secretory phospholipase A2 and prognosis in patients with stable coronary heart disease: mendelian randomization study. PLoS ONE 6:e22318. https://doi.org/10.1371/journal.pone.0022318. (PMID: 10.1371/journal.pone.0022318217998213142130)
Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400. (PMID: 10.1161/CIRCULATIONAHA.113.001878238770613801217)
Chen Q, Li Y, Bie B et al (2023) P38 MAPK activated ADAM17 mediates ACE2 shedding and promotes cardiac remodeling and heart failure after myocardial infarction. Cell Commun Signal 21(1):73. (PMID: 10.1186/s12964-023-01087-33704627810091339)
Dalhäusser AK, Rössler OG, Thiel G (2022) Regulation of c-Fos gene transcription by stimulus-responsive protein kinases. Gene 821:146284. (PMID: 10.1016/j.gene.2022.14628435143939)
Darbandi Azar A, Tavakoli F, Moladoust H, Zare A, Sadeghpour A (2014) Echocardiographic evaluation of cardiac function in ischemic rats: value of m-mode echocardiography. Res Cardiovasc Med 3:e22941. https://doi.org/10.5812/cardiovascmed.22941. (PMID: 10.5812/cardiovascmed.22941257852514347793)
Fan D, Yang Z, Yuan Y et al (2017) Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct 8(8):2875–2885. (PMID: 10.1039/C7FO00204A28726929)
Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11(5):255–265. (PMID: 10.1038/nrcardio.2014.28246630914407144)
Gajarsa JJ, Kloner RA (2011) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 16(1):13–21. (PMID: 10.1007/s10741-010-9181-720623185)
Ge J, Guo K, Zhang C et al (2021) Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci Total Environ 773:145442. (PMID: 10.1016/j.scitotenv.2021.14544233940727)
Gu X, Long Q, Wei W et al (2022) Number 2 Feibi recipe inhibits H2O2-Mediated oxidative stress damage of alveolar epithelial cells by regulating the balance of Mitophagy/Apoptosis. Front Pharmacol 13:830554. (PMID: 10.3389/fphar.2022.830554353706848968876)
Jin H, Yu J (2019) Lidocaine protects H9c2 cells from hypoxia-induced injury through regulation of the MAPK/ERK/NF-κB signaling pathway. Exp Ther Med 18(5):4125–4131. (PMID: 316413866796719)
Jneid H, Alam M, Virani SS, Bozkurt B (2013) Redefining myocardial infarction: what is new in the ESC/ACCF/AHA/WHF third Universal Definition of myocardial infarction. Methodist Debakey Cardiovasc J 9(3):169–172. (PMID: 10.14797/mdcj-9-3-169240662013782325)
Kaczmarek L (2018) From c-Fos to MMP-9: in control of synaptic plasticity to produce healthy and diseased mind, a personal view. Postepy Biochem 64(2):101–109. (PMID: 10.18388/pb.2018_11930656892)
Kumar S, Nagesh D, Ramasubbu V, Prabhashankar AB, Sundaresan NR (2023) Isolation and culture of primary fibroblasts from neonatal murine hearts to study Cardiac Fibrosis. Bio Protoc 13(4):e4616. (PMID: 10.21769/BioProtoc.4616368455329947550)
Li SW, Wang CY, Jou YJ et al (2016) SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. Sci Rep 6:25754. (PMID: 10.1038/srep25754271730064865725)
Li C, Han R, Kang L et al (2017) Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis. Sci Rep 7:40523. (PMID: 10.1038/srep40523280916155238375)
Li J, Zhao Y, Zhou N, Li L, Li K (2019) Dexmedetomidine attenuates myocardial ischemia-reperfusion Injury in Diabetes Mellitus by inhibiting endoplasmic reticulum stress. J Diabetes Res 2019(7869318). https://doi.org/10.1155/2019/7869318.
Li F, Pang LZ, Zhang L, Zhang Y, Zhang YY, Yu BY, Kou JP (2019a) YiQiFuMai powder injection ameliorates chronic heart failure through cross-talk between adipose tissue and cardiomyocytes via up-regulation of circulating adipokine omentin. Biomed Pharmacother 119:109418. https://doi.org/10.1016/j.biopha.2019.109418. (PMID: 10.1016/j.biopha.2019.10941831505423)
Li H, Zhu J, Xu YW et al (2022) Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol 54:102384. (PMID: 10.1016/j.redox.2022.102384357771989287735)
Li C, Zhang Z, Peng Y et al (2022a) mTORC1 is a key regulator that mediates OGD- and TGFβ1-induced myofibroblast transformation and chondroitin-4-sulfate expression in cardiac fibroblasts. Exp Ther Med 23(6):413. (PMID: 10.3892/etm.2022.11340356010649117951)
Liu JJ, Huang N, Lu Y et al (2015) Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep 5:17108. (PMID: 10.1038/srep17108265966404656999)
Lv XC, Zhou HY (2012) Resveratrol protects H9c2 embryonic rat heart derived cells from oxidative stress by inducing autophagy: role of p38 mitogen-activated protein kinase. Can J Physiol Pharmacol 90(5):655–662. (PMID: 10.1139/y2012-05122537597)
Makino H, Seki S, Yahara Y et al (2017) A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci Rep 7(1):16983. (PMID: 10.1038/s41598-017-17289-y292089675717052)
McKie PM, Burnett JC Jr (2016) NT-proBNP: the Gold Standard Biomarker in Heart failure. J Am Coll Cardiol 68:2437–2439. https://doi.org/10.1016/j.jacc.2016.10.001. (PMID: 10.1016/j.jacc.2016.10.00127908348)
Meijles DN, Cull JJ, Markou T et al (2020) Redox Regulation of Cardiac ASK1 (apoptosis Signal-regulating kinase 1) controls p38-MAPK (mitogen-Activated protein kinase) and orchestrates Cardiac Remodeling to Hypertension. Hypertension 76(4):1208–1218. (PMID: 10.1161/HYPERTENSIONAHA.119.1455632903101)
Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87:1402–1412. https://doi.org/10.1172/JCI115146. (PMID: 10.1172/JCI1151461849149295184)
Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR (2017) Murine Left Anterior Descending (LAD) Coronary Artery Ligation: An Improved and Simplified Model for Myocardial Infarction. J Vis Exp. (122).
Roever L, Palandri Chagas AC, Editorial (2017) Cardiac remodeling: New insights in physiological and pathological adaptations. Front Physiol 8:751. (PMID: 10.3389/fphys.2017.00751290183665622945)
Shen J, Xing W, Gong F, et al (2019) MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1. Cell Cycle. Jun;18(12):1335-1348.
Soriano FG, Guido MC, Barbeiro HV, Caldini EG, Lorigados CB, Nogueira AC (2014) Endotoxemic myocardial dysfunction: subendocardial collagen deposition related to coronary driving pressure. Shock 42(5):472–479. (PMID: 10.1097/SHK.000000000000023225051283)
Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581. (PMID: 10.1007/s00441-016-2431-9273241275010608)
Ten Hoeve AL, Hakimi MA, Barragan A (2019) Sustained Egr-1 response via p38 MAP kinase signaling modulates early Immune responses of dendritic cells parasitized by Toxoplasma Gondii. Front Cell Infect Microbiol 9:349. (PMID: 10.3389/fcimb.2019.00349316816266797980)
Teringova E, Tousek P (2017) Apoptosis in ischemic heart disease. J Transl Med 15(1):87. (PMID: 10.1186/s12967-017-1191-y284606445412049)
Turner NA, Blythe NM (2019) Cardiac fibroblast p38 MAPK: a critical Regulator of myocardial remodeling. J Cardiovasc Dev Dis. 6(3).
Varzideh F, Kansakar U, Donkor K et al (2022) Cardiac remodeling after myocardial infarction: functional contribution of microRNAs to inflammation and fibrosis. Front Cardiovasc Med 9:863238. (PMID: 10.3389/fcvm.2022.863238354980519043126)
Wan N, Liu X, Zhang XJ et al (2015) Toll-interacting protein contributes to mortality following myocardial infarction through promoting inflammation and apoptosis. Br J Pharmacol 172(13):3383–3396. (PMID: 10.1111/bph.13130257657124500373)
Xie J, Zhang Y, Wang L, Qi W, Zhang M (2012) Composition of fatty oils from semen ziziphi spinosae and its cardiotonic effect on isolated toad hearts. Nat Prod Res 26:479–483. https://doi.org/10.1080/14786419.2010.516433. (PMID: 10.1080/14786419.2010.51643321707231)
Xie Y, Li Y, Chen J, Ding H, Zhang X (2023) Early growth response-1: key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovasc Med 10:1162662. (PMID: 10.3389/fcvm.2023.11626623705710210086247)
XSh F, Hao JF, Zhou HY, Zhu LX, Wang JH, Song FQ (2010) Pharmacological studies on the sedative-hypnotic effect of Semen Ziziphi spinosae (Suanzaoren) and Radix et rhizoma salviae miltiorrhizae (Danshen) extracts and the synergistic effect of their combinations. Phytomedicine 17(1):75–80. (PMID: 10.1016/j.phymed.2009.07.004)
Xue Y, Fan X, Yang R, Jiao Y, Li Y (2020) miR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS. Biosci Rep. 40(9).
Yang NJ, Liu YR, Tang ZS et al (2021) Poria Cum Radix Pini rescues Barium Chloride-Induced Arrhythmia by regulating the cGMP-PKG signalling pathway involving ADORA1 in zebrafish. Front Pharmacol 12:688746. (PMID: 10.3389/fphar.2021.688746343937778360851)
Yeung WF, Chung KF, Poon MM et al (2012) Chinese herbal medicine for insomnia: a systematic review of randomized controlled trials. Sleep Med Rev 16(6):497–507. (PMID: 10.1016/j.smrv.2011.12.00522440393)
Yisheng H, Yuhua J, Xuegang S, Yunyun P (2011) Effects of Jujuboside A on Arrhythmia and expression of Bcl-2 and Bax in rats with myocardial ischemia reperfusion Injury. Traditional Chinese Drug Research and Clinical Pharmacology.
Yoshimura Y, Nakamura K, Seno M et al (2023) Generation of c-Fos knockout rats, and observation of their phenotype. Exp Anim 72(1):95–102. (PMID: 10.1538/expanim.22-007736216550)
Zhang X, Hu W, Feng F, Xu J, Wu F (2016) Apelin-13 protects against myocardial infarction-induced myocardial fibrosis. Mol Med Rep 13(6):5262–5268. (PMID: 10.3892/mmr.2016.516327109054)
Zhang Y, Qian P, Zhou H, Shen R, Hu B, Shen Y, Zhang X, Shen X, Xu G, Jin L (2018) Pharmacological signatures of the Exenatide nanoparticles Complex Against Myocardial Ischemia Reperfusion Injury. Kidney Blood Press Res 43:1273–1284. https://doi.org/10.1159/000492409. (PMID: 10.1159/00049240930078011)
Zhou QH, Wang HL, Zhou XL et al (2017) Efficacy and safety of suanzaoren decoction for chronic insomnia disorder in adults: study protocol for randomised, double-blind, double-dummy, placebo-controlled trial. BMJ Open 7(4):e014280. (PMID: 10.1136/bmjopen-2016-014280283773945387950)
Zhou QH, Zhou XL, Xu MB et al (2018) Suanzaoren Formulae for Insomnia: updated clinical evidence and possible mechanisms. Front Pharmacol 9:76. (PMID: 10.3389/fphar.2018.00076294793175811769)
معلومات مُعتمدة: No. 2017B58 Hangzhou Health Science and Technology Plan General (Class B) Project; 2021ZA125 Zhejiang Province Traditional Chinese Medicine Modernisation Project
فهرسة مساهمة: Keywords: Anshen Shumai Decoction; Cardiomyocyte apoptosis; Myocardial fibroblasts; Myocardial infarction; p38 MAPK inhibition
المشرفين على المادة: 0 (Early Growth Response Protein 1)
EC 2.7.11.24 (p38 Mitogen-Activated Protein Kinases)
0 (Proto-Oncogene Proteins c-fos)
0 (Egr1 protein, rat)
0 (Drugs, Chinese Herbal)
تواريخ الأحداث: Date Created: 20240614 Date Completed: 20240807 Latest Revision: 20240807
رمز التحديث: 20240808
DOI: 10.1007/s10735-024-10214-4
PMID: 38874870
قاعدة البيانات: MEDLINE
الوصف
تدمد:1567-2387
DOI:10.1007/s10735-024-10214-4