دورية أكاديمية

Production of biologically active human basic fibroblast growth factor (hFGFb) using Nicotiana tabacum transplastomic plants.

التفاصيل البيبلوغرافية
العنوان: Production of biologically active human basic fibroblast growth factor (hFGFb) using Nicotiana tabacum transplastomic plants.
المؤلفون: Müller C; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina., Budnik N; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina., Mirkin FG; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina., Vater CF; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina., Bravo-Almonacid FF; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina.; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, B1876BXD, Argentina., Perez-Castro C; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina., Wirth SA; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina.; Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina., Segretin ME; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina. segretin@dna.uba.ar.; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina. segretin@dna.uba.ar.
المصدر: Planta [Planta] 2024 Jun 15; Vol. 260 (1), pp. 28. Date of Electronic Publication: 2024 Jun 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Nicotiana*/genetics , Nicotiana*/metabolism , Plants, Genetically Modified* , Fibroblast Growth Factor 2*/genetics , Fibroblast Growth Factor 2*/metabolism , Chloroplasts*/metabolism , Chloroplasts*/genetics , Recombinant Proteins*/genetics , Recombinant Proteins*/metabolism, Humans ; HEK293 Cells ; Cell Proliferation ; Plant Leaves/metabolism ; Plant Leaves/genetics
مستخلص: Main Conclusion: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Allen G, Flores-Vergara M, Krasnyanski S, Kumar S, Thompson W (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5):2320–2325. https://doi.org/10.1038/nprot.2006.384. (PMID: 10.1038/nprot.2006.38417406474)
An N, Ou J, Jiang D, Zhang L, Liu J, Fu K, Dai Y, Yang D (2013) Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds. Int J Mol Sci 14(2):3556–3567. https://doi.org/10.3390/ijms14023556. (PMID: 10.3390/ijms14023556234346583588058)
Bhatwa A, Wang W, Hassan YI, Abraham N, Li X-Z, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551. https://doi.org/10.3389/fbioe.2021.630551. (PMID: 10.3389/fbioe.2021.630551336440217902521)
Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241. https://doi.org/10.1146/annurev-arplant-050213-040212. (PMID: 10.1146/annurev-arplant-050213-04021225494465)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
Buyel JF (2019) Plant molecular farming—Integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci 9:1893. https://doi.org/10.3389/fpls.2018.01893. (PMID: 10.3389/fpls.2018.01893307135426345721)
Buyel JF, Twyman RM, Fischer R (2015) Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 33:902–913. https://doi.org/10.1016/j.biotechadv.2015.04.010. (PMID: 10.1016/j.biotechadv.2015.04.01025922318)
Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol Biofuels 9:154. https://doi.org/10.1186/s13068-016-0569-z. (PMID: 10.1186/s13068-016-0569-z274537294957871)
Clark M, Maselko M (2020) Transgene biocontainment strategies for molecular farming. Front Plant Sci 11:210. https://doi.org/10.3389/fpls.2020.00210. (PMID: 10.3389/fpls.2020.00210321945987063990)
Coates RJ, Young MT, Scofield S (2022) Optimising expression and extraction of recombinant proteins in plants. Front Plant Sci 13:1074531. https://doi.org/10.3389/fpls.2022.1074531. (PMID: 10.3389/fpls.2022.1074531365708819773421)
Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1(10):1071–1079. https://doi.org/10.1002/biot.200600145. (PMID: 10.1002/biot.20060014517004305)
Ding S-H, Huang L-Y, Wang Y-D, Sun H-C, Xiang Z-H (2006) High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnol Lett 28(12):869–875. https://doi.org/10.1007/s10529-006-9018-6. (PMID: 10.1007/s10529-006-9018-616786271)
Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop H (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19(3):333–345. https://doi.org/10.1046/j.1365-313X.1999.00543.x. (PMID: 10.1046/j.1365-313X.1999.00543.x10476080)
Eidenberger L, Kogelmann B, Steinkellner H (2023) Plant-based biopharmaceutical engineering. Nat Rev Bioeng 1(6):426–439. https://doi.org/10.1038/s44222-023-00044-6. (PMID: 10.1038/s44222-023-00044-63731769010030082)
Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol 1(2):71–79. https://doi.org/10.1046/j.1467-7652.2003.00008.x. (PMID: 10.1046/j.1467-7652.2003.00008.x)
Kim YS, Lee H-J, Han M, Yoon N, Kim Y, Ahn J (2021) Effective production of human growth factors in Escherichia coli by fusing with small protein 6HFh8. Microb Cell Fact 20(1):9. https://doi.org/10.1186/s12934-020-01502-1. (PMID: 10.1186/s12934-020-01502-1334134077791764)
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0. (PMID: 10.1038/227680a05432063)
Lee J-H, Um S, Jang J-H, Seo BM (2012) Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res 348(3):475–484. https://doi.org/10.1007/s00441-012-1392-x. (PMID: 10.1007/s00441-012-1392-x22437875)
Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF (2010) High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta 231(2):387–395. https://doi.org/10.1007/s00425-009-1058-4. (PMID: 10.1007/s00425-009-1058-420041332)
Levenstein ME, Ludwig TE, Xu R-H, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24(3):568–574. https://doi.org/10.1634/stemcells.2005-0247. (PMID: 10.1634/stemcells.2005-024716282444)
Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510. https://doi.org/10.1104/pp.110.170969. (PMID: 10.1104/pp.110.170969212396223091108)
Morgenfeld M, Lentz EM, Segretin ME, Alfano EF, Bravo-Almonacid F (2014) Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol Biotechnol 56(11):1021–1031. https://doi.org/10.1007/s12033-014-9781-x. (PMID: 10.1007/s12033-014-9781-x24981330)
Mossahebi-Mohammadi M, Quan M, Zhang J-S, Li X (2020) FGF signaling pathway: a key regulator of stem cell pluripotency. Front Cell Dev Biol 18(8):79. https://doi.org/10.3389/fcell.2020.00079. (PMID: 10.3389/fcell.2020.00079)
Müller H-M, Steringer JP, Wegehingel S, Bleicken S, Münsten M, Dimou E, Unger S, Weidmann G, Andreas H, García-Sáez AJ, Wild K, Sinning I (2015) Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J Biol Chem 290(14):8925–8937. https://doi.org/10.1074/jbc.M114.622456. (PMID: 10.1074/jbc.M114.622456256944244423683)
Muñoz-Bernart M, Budnik N, Castro A, Manzi M, Monge ME, Pioli J, Defranchi S, Parrilla G, Santilli JP, Davies K, Espinosa JM, Kobayashi K, Vigliano C, Perez-Castro C (2023) S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) inhibits lung cancer tumorigenesis by regulating cell plasticity. Biol Direct 18(1):8. https://doi.org/10.1186/s13062-023-00364-y. (PMID: 10.1186/s13062-023-00364-y368723279985837)
Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity bymassive expression of a highly stable protein antibiotic. Plant J 57(3):436–445. https://doi.org/10.1111/j.1365-313X.2008.03702.x. (PMID: 10.1111/j.1365-313X.2008.03702.x18939966)
Oliveira C, Domingues L (2018) Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 102(1):81–92. https://doi.org/10.1007/s00253-017-8623-8. (PMID: 10.1007/s00253-017-8623-829151158)
Rahman I, Fang L, Wei Z, Zheng X, Jiazhang L, Huang L, Xu Z (2020) Highly efficient soluble expression and purification of recombinant human basic fibroblast growth factor (hbFGF) by fusion with a new collagen-like protein (Scl2) in Escherichia coli. Prep Biochem Biotechnol 50(6):598–606. https://doi.org/10.1080/10826068.2020.1721533. (PMID: 10.1080/10826068.2020.172153332027221)
Sainsbury F, Jutras PV, Vorster J, Goulet M-C, Micheaud D (2016) A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants. Front Plant Sci 7:141. https://doi.org/10.3389/fpls.2016.00141. (PMID: 10.3389/fpls.2016.00141269130454753422)
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci 10:720. https://doi.org/10.3389/fpls.2019.00720. (PMID: 10.3389/fpls.2019.00720312448686579924)
Scotti N, Cardi T (2014) Transgene-induced pleiotropic effects in transplastomic plants. Biotechnol Lett 36(2):229–239. https://doi.org/10.1007/s10529-013-1356-6. (PMID: 10.1007/s10529-013-1356-624101241)
Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF (2012) Transformation of Solanum tuberosum plastids allows high expression levels of b-glucuronidase both in leaves and microtubers developed in vitro. Planta 235(4):807–818. https://doi.org/10.1007/s00425-011-1541-6. (PMID: 10.1007/s00425-011-1541-622071556)
Shanmugaraj B, Bulaon CJ, Phoolcharoen W (2020) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (basel) 9(7):842. https://doi.org/10.3390/plants9070842. (PMID: 10.3390/plants907084232635427)
Song J-A, Koo B-K, Chong SH, Kwak J, Ryu H-B, Nguyen MT, Thi Vu TT, Jeong B, Kim SW, Choe H (2013) Expression and purification of biologically active human FGF2 containing the b′a′ domains of human PDI in Escherichia coli. Appl Biochem Biotechnol 170(1):67–80. https://doi.org/10.1007/s12010-013-0140-3. (PMID: 10.1007/s12010-013-0140-323471584)
Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90(3):913–917. https://doi.org/10.1073/pnas.90.3.913. (PMID: 10.1073/pnas.90.3.913838153745780)
Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87(21):8526–8530. https://doi.org/10.1073/pnas.87.21.8526. (PMID: 10.1073/pnas.87.21.85261160711254989)
Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem (palo Alto Calif) 9(1):271–294. https://doi.org/10.1146/annurev-anchem-071015-041706. (PMID: 10.1146/annurev-anchem-071015-04170627049632)
Venkatesan M, Semper C, Skrivergaard S, Di Leo R, Mesa N, Rasmussen MK, Young JF, Therkildsen M, Stogios PJ, Savchenko A (2022) Recombinant production of growth factors for application in cell culture. Science 25(10):105054. https://doi.org/10.1016/j.isci.2022.105054. (PMID: 10.1016/j.isci.2022.105054)
Wang Y-P, Wei Z-Y, Zhong X-F, Lin C-J, Cai Y-H, Ma J, Zhang Y-Y, Liu Y-Z, Xing S-C (2016) Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Int J Mol Sci 17(1):19. https://doi.org/10.3390/ijms17010019. (PMID: 10.3390/ijms17010019)
Wilding KM, Hunt JP, Wilkerson JW, Funk PJ, Swensen RL, Carver WC, Christian ML, Bundy BC (2019) Endotoxin-free E. coli-based cell-free protein synthesis: pre-expression endotoxin removal approaches for on-demand cancer therapeutic production. Biotechnol J 14(3):e1800271. https://doi.org/10.1002/biot.201800271. (PMID: 10.1002/biot.20180027130024107)
Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Barañao L, Bravo-Almonacid F (2004) Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed 13:23–35. https://doi.org/10.1023/B:MOLB.0000012329.74067.ca. (PMID: 10.1023/B:MOLB.0000012329.74067.ca)
Wirth S, Segretin ME, Mentaberry A, Bravo-Almonacid F (2006) Accumulation of hEGF and hEGF–fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. J Biotechnol 125(2):159–172. https://doi.org/10.1016/j.jbiotec.2006.02.012. (PMID: 10.1016/j.jbiotec.2006.02.01216584796)
Xiao Z, Riccardi D, Velazquez HA, Chin AL, Yates CR, Carrick JD, Smith JC, Baudry J, Quarles LD (2016) A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Sci Signal 9(455):113. https://doi.org/10.1126/scisignal.aaf5034. (PMID: 10.1126/scisignal.aaf5034)
Yang J, Qiang W, Ren S, Yi S, Li J, Guan L, Du L, Guo Y, Hu H, Li H, Li X (2018) High-efficiency production of bioactive oleosin-basic fibroblast growth factor in A. thaliana and evaluation of wound healing. Gene 639:69–76. https://doi.org/10.1016/j.gene.2017.09.064. (PMID: 10.1016/j.gene.2017.09.06428970151)
معلومات مُعتمدة: PICT 2014-3700 ANPCyT
فهرسة مساهمة: Keywords: Basic fibroblast growth factor; Cell culture; Molecular farming; Plant-based bioreactors; Plastid transformation; Tobacco
المشرفين على المادة: 103107-01-3 (Fibroblast Growth Factor 2)
0 (Recombinant Proteins)
تواريخ الأحداث: Date Created: 20240615 Date Completed: 20240615 Latest Revision: 20240702
رمز التحديث: 20240702
DOI: 10.1007/s00425-024-04456-5
PMID: 38878167
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2048
DOI:10.1007/s00425-024-04456-5