دورية أكاديمية

Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome.

التفاصيل البيبلوغرافية
العنوان: Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome.
المؤلفون: Yagi H; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Xu X; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Gabriel GC; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Lo C; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. cel36@pitt.edu.
المصدر: Advances in experimental medicine and biology [Adv Exp Med Biol] 2024; Vol. 1441, pp. 947-961.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 0121103 Publication Model: Print Cited Medium: Print ISSN: 0065-2598 (Print) Linking ISSN: 00652598 NLM ISO Abbreviation: Adv Exp Med Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
مواضيع طبية MeSH: Hypoplastic Left Heart Syndrome*/genetics , Hypoplastic Left Heart Syndrome*/pathology , Hypoplastic Left Heart Syndrome*/metabolism , Hypoplastic Left Heart Syndrome*/physiopathology , Disease Models, Animal* , Signal Transduction*, Animals ; Humans ; Mice ; Myocytes, Cardiac/metabolism ; Myocytes, Cardiac/pathology ; Induced Pluripotent Stem Cells/metabolism
مستخلص: Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with underdevelopment of left-sided heart structures. While previously uniformly fatal, surgical advances now provide highly effective palliation that allows most HLHS patients to survive their critical CHD. Nevertheless, there remains high morbidity and mortality with high risk of heart failure. As hemodynamic compromise from restricted aortic blood flow has been suggested to underlie the poor LV growth, this suggests the possibility of prenatal fetal intervention to recover LV growth. As such interventions have yielded ambiguous results, the optimization of therapy will require more mechanistic insights into the developmental etiology for HLHS. Clinical studies have shown high heritability for HLHS, with an oligogenic etiology indicated in conjunction with genetic heterogeneity. This is corroborated with the recent recovery of mutant mice with HLHS. With availability-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from HLHS mice and patients, new insights have emerged into the cellular and molecular etiology for the LV hypoplasia in HLHS. Cell proliferation defects were observed in conjunction with metaphase arrest and the disturbance of Hippo-YAP signaling. The left-sided restriction of the ventricular hypoplasia may result from epigenetic perturbation of pathways regulating left-right patterning. These findings suggest new avenues for fetal interventions with therapies using existing drugs that target the Hippo-YAP pathway and/or modulate epigenetic regulation.
(© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
References: Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol. 2020;318(4):H947–H65. https://doi.org/10.1152/ajpheart.00518.2019 . (PMID: 10.1152/ajpheart.00518.2019321085257191494)
Driscoll DJ, Offord KP, Feldt RH, Schaff HV, Puga FJ, Danielson GK. Five- to fifteen-year follow-up after Fontan operation. Circulation. 1992;85(2):469–96. https://doi.org/10.1161/01.cir.85.2.469 . (PMID: 10.1161/01.cir.85.2.4691735145)
Gentles TL, Gauvreau K, Mayer JE, Jr., Fishberger SB, Burnett J, Colan SD, et al. Functional outcome after the Fontan operation: factors influencing late morbidity. J Thorac Cardiovasc Surg. 1997;114(3):392–403; discussion 4–5. https://doi.org/10.1016/s0022-5223(97)70184-3.
Lloyd DF, Rutherford MA, Simpson JM, Razavi R. The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus. Cardiol Young. 2017;27(2):217–23. (PMID: 10.1017/S104795111600164527821206)
Sigmon ER, Oster M, Kelleman M, Susi A, Nylund C. Association of Congenital Heart Disease with autism: a case-control study. American Academy of Pediatrics Elk Grove Village; 2019.
Hansen JH, Rotermann I, Logoteta J, Jung O, Dütschke P, Scheewe J, et al. Neurodevelopmental outcome in hypoplastic left heart syndrome: impact of perioperative cerebral tissue oxygenation of the Norwood procedure. J Thorac Cardiovasc Surg. 2016;151(5):1358–66. (PMID: 10.1016/j.jtcvs.2016.02.03527085616)
Newburger JW, Sleeper LA, Bellinger DC, Goldberg CS, Tabbutt S, Lu M, et al. Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial. Circulation. 2012;125(17):2081–91. (PMID: 10.1161/CIRCULATIONAHA.111.064113224564753341507)
deAlmeida A, McQuinn T, Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res. 2007;100(9):1363–70. https://doi.org/10.1161/01.RES.0000266606.88463.cb . (PMID: 10.1161/01.RES.0000266606.88463.cb17413043)
Fishman NH, Hof RB, Rudolph AM, Heymann MA. Models of congenital heart disease in fetal lambs. Circulation. 1978;58(2):354–64. https://doi.org/10.1161/01.cir.58.2.354 . (PMID: 10.1161/01.cir.58.2.354668085)
Wong FY, Veldman A, Sasi A, Teoh M, Edwards A, Chan Y, et al. Induction of left ventricular hypoplasia by occluding the foramen ovale in the fetal lamb. Sci Rep. 2020;10(1):880. https://doi.org/10.1038/s41598-020-57694-4 . (PMID: 10.1038/s41598-020-57694-4319649896972793)
Feit LR, Copel JA, Kleinman CS. Foramen ovale size in the normal and abnormal human fetal heart: an indicator of transatrial flow physiology. Ultrasound Obstet Gynecol. 1991;1(5):313–9. https://doi.org/10.1046/j.1469-0705.1991.01050313.x . (PMID: 10.1046/j.1469-0705.1991.01050313.x12797035)
Freud LR, McElhinney DB, Marshall AC, Marx GR, Friedman KG, del Nido PJ, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014;130(8):638–45. (PMID: 10.1161/CIRCULATIONAHA.114.009032250524014299861)
Pickard SS, Wong JB, Bucholz EM, Newburger JW, Tworetzky W, Lafranchi T, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: a decision analysis. Circ Cardiovasc Qual Outcomes. 2020;13(4):e006127. (PMID: 10.1161/CIRCOUTCOMES.119.006127322525497737668)
McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90. (PMID: 10.1161/CIRCULATIONAHA.109.848994197866354235336)
Hinton RB Jr, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–5. https://doi.org/10.1016/j.jacc.2007.07.021 . (PMID: 10.1016/j.jacc.2007.07.02117936159)
McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134(2):180–6. (PMID: 10.1002/ajmg.a.306021361302)
Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res. 2001;479(1–2):173–86. https://doi.org/10.1016/s0027-5107(01)00160-9 . (PMID: 10.1016/s0027-5107(01)00160-911470490)
Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, et al. Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circ-Cardiovasc Gene. 2015;8(4):564–71. https://doi.org/10.1161/Circgenetics.115.001070 . (PMID: 10.1161/Circgenetics.115.001070)
Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P, et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol. 2003;41(11):2072–6. https://doi.org/10.1016/s0735-1097(03)00420-0 . (PMID: 10.1016/s0735-1097(03)00420-012798584)
McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–5. https://doi.org/10.1016/j.jacc.2003.05.004 . (PMID: 10.1016/j.jacc.2003.05.00414607454)
Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E. Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet. 2010;78(6):533–40. https://doi.org/10.1111/j.1399-0004.2010.01422.x . (PMID: 10.1111/j.1399-0004.2010.01422.x20456451)
McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008;17(18):2886–93. https://doi.org/10.1093/hmg/ddn187 . (PMID: 10.1093/hmg/ddn187185937162722892)
Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4. https://doi.org/10.1038/nature03940 . (PMID: 10.1038/nature0394016025100)
McBride KL, Zender GA, Fitzgerald-Butt SM, Seagraves NJ, Fernbach SD, Zapata G, et al. Association of common variants in ERBB4 with congenital left ventricular outflow tract obstruction defects. Birth Defects Res A Clin Mol Teratol. 2011;91(3):162–8. https://doi.org/10.1002/bdra.20764 . (PMID: 10.1002/bdra.20764212905643736588)
Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004;74(1):93–105. https://doi.org/10.1086/380998 . (PMID: 10.1086/38099814681828)
Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6. https://doi.org/10.1126/science.aac9396 . (PMID: 10.1126/science.aac9396267854924890146)
Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet. 2008;17(10):1397–405. https://doi.org/10.1093/hmg/ddn027 . (PMID: 10.1093/hmg/ddn02718276607)
Lara DA, Ethen MK, Canfield MA, Nembhard WN, Morris SA. A population-based analysis of mortality in patients with turner syndrome and hypoplastic left heart syndrome using the Texas birth defects registry. Congenit Heart Dis. 2017;12(1):105–12. https://doi.org/10.1111/chd.12413 . (PMID: 10.1111/chd.1241327685952)
Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A. 2004;129A(1):51–61. https://doi.org/10.1002/ajmg.a.30090 . (PMID: 10.1002/ajmg.a.3009015266616)
Martinez Crespo JM, Del Rio M, Gomez O, Borrell A, Puerto B, Cararach V, et al. Prenatal diagnosis of hypoplastic left heart syndrome and trisomy 18 in a fetus with normal nuchal translucency and abnormal ductus venosus blood flow at 13 weeks of gestation. Ultrasound Obstet Gynecol. 2003;21(5):490–3. https://doi.org/10.1002/uog.119 . (PMID: 10.1002/uog.11912768563)
Kukora S, Firn J, Laventhal N, Vercler C, Moore B, Lantos JD. Infant with trisomy 18 and hypoplastic left heart syndrome. Pediatrics. 2019;143(5) https://doi.org/10.1542/peds.2018-3779 .
Glauser TA, Rorke LB, Weinberg PM, Clancy RR. Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics. 1990;85(6):984–90. (PMID: 10.1542/peds.85.6.9842339047)
Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, Chen Z, et al. The complex genetics of hypoplastic left heart syndrome. Nat Genet. 2017;49(7):1152–9. https://doi.org/10.1038/ng.3870 . (PMID: 10.1038/ng.3870285306785737968)
Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521(7553):520–4. https://doi.org/10.1038/nature14269 . (PMID: 10.1038/nature14269258074834617540)
Jantzen DW, Moon-Grady AJ, Morris SA, Armstrong AK, Berg C, Dangel J, et al. Hypoplastic left heart syndrome with intact or restrictive atrial septum: a report from the international fetal cardiac intervention registry. Circulation. 2017;136(14):1346–9. https://doi.org/10.1161/CIRCULATIONAHA.116.025873 . (PMID: 10.1161/CIRCULATIONAHA.116.02587328864444)
Taketazu M, Barrea C, Smallhorn JF, Wilson GJ, Hornberger LK. Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J Am Coll Cardiol. 2004;43(10):1902–7. https://doi.org/10.1016/j.jacc.2004.01.033 . (PMID: 10.1016/j.jacc.2004.01.03315145119)
Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol. 2013;92(8–9):237–46. https://doi.org/10.1016/j.ejcb.2013.09.001 . (PMID: 10.1016/j.ejcb.2013.09.00124189169)
Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell. 1999;97(6):779–90. (PMID: 10.1016/S0092-8674(00)80789-810380929)
Teekakirikul P, Zhu W, Gabriel GC, Young CB, Williams K, Martin LJ, et al. Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of bicuspid aortic valve and left-sided congenital heart disease. Human Genetics Genomics Adv. 2021;2:100037. (PMID: 10.1016/j.xhgg.2021.100037)
Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 2005;19(13):1581–95. https://doi.org/10.1101/gad.1286905 . (PMID: 10.1101/gad.1286905159988111172064)
McDonel P, Demmers J, Tan DW, Watt F, Hendrich BD. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev Biol. 2012;363(1):62–73. https://doi.org/10.1016/j.ydbio.2011.12.019 . (PMID: 10.1016/j.ydbio.2011.12.01922206758)
Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46(12):6026–40. https://doi.org/10.1093/nar/gky347 . (PMID: 10.1093/nar/gky347297333946158608)
Saunders A, Faiola F, Wang J. Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells. 2013;31(7):1227–36. https://doi.org/10.1002/stem.1384 . (PMID: 10.1002/stem.138423653415)
Gaber N, Gagliardi M, Patel P, Kinnear C, Zhang C, Chitayat D, et al. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. Am J Pathol. 2013;183(3):720–34. https://doi.org/10.1016/j.ajpath.2013.05.022 . (PMID: 10.1016/j.ajpath.2013.05.02223871585)
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9. https://doi.org/10.1073/pnas.1116136109 . (PMID: 10.1073/pnas.1116136109)
Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70. https://doi.org/10.1126/scisignal.2002278 . (PMID: 10.1126/scisignal.2002278220284673440872)
Xu X, Jin K, Bais AS, Zhu W, Yagi H, Feinstein TN, et al. iPSC modeling shows uncompensated mitochondrial mediated oxidative stress underlies early heart failure in hypoplastic left heart syndrome. bioRxiv. 2021:2021.05.09.443165. https://doi.org/10.1101/2021.05.09.443165.
Ota M, Sasaki H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development. 2008;135(24):4059–69. https://doi.org/10.1242/dev.027151 . (PMID: 10.1242/dev.02715119004856)
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61. https://doi.org/10.1126/science.1199010 . (PMID: 10.1126/science.1199010215120313133743)
de Soysa TY, Ranade SS, Okawa S, Ravichandran S, Huang Y, Salunga HT, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature. 2019;572(7767):120–4. https://doi.org/10.1038/s41586-019-1414-x . (PMID: 10.1038/s41586-019-1414-x313412796719697)
Dai HQ, Wang BA, Yang L, Chen JJ, Zhu GC, Sun ML, et al. TET-mediated DNA demethylation controls gastrulation by regulating lefty-nodal signalling. Nature. 2016;538(7626):528–32. https://doi.org/10.1038/nature20095 . (PMID: 10.1038/nature2009527760115)
Wang L, Liu Z, Lin H, Ma D, Tao Q, Liu F. Epigenetic regulation of left-right asymmetry by DNA methylation. EMBO J. 2017;36(20):2987–97. https://doi.org/10.15252/embj.201796580 . (PMID: 10.15252/embj.201796580288828475641680)
Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001;15(5):603–18. https://doi.org/10.1101/gad.872801 . (PMID: 10.1101/gad.87280111238380312641)
Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, et al. Baf60c is a nuclear notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A. 2007;104(3):846–51. https://doi.org/10.1073/pnas.0608118104 . (PMID: 10.1073/pnas.0608118104172109151783402)
Pradat P, Francannet C, Harris JA, Robert E. The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol. 2003;24(3):195–221. https://doi.org/10.1007/s00246-002-9401-6 . (PMID: 10.1007/s00246-002-9401-612632215)
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. elife. 2015;4:4. https://doi.org/10.7554/eLife.05563 . (PMID: 10.7554/eLife.05563)
Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75. https://doi.org/10.1016/j.cell.2015.05.026 . (PMID: 10.1016/j.cell.2015.05.02626073943)
Lev M. Pathologic anatomy and interrelationship of hypoplasia of the aortic tract complexes. Lab Investig. 1952;1(1):61–70. (PMID: 14939725)
Noonan JA, Nadas AS. The hypoplastic left heart syndrome; an analysis of 101 cases. Pediatr Clin N Am. 1958;5(4):1029–56. https://doi.org/10.1016/s0031-3955(16)30727-1 . (PMID: 10.1016/s0031-3955(16)30727-1)
Norwood WI, Lang P, Hansen DD. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med. 1983;308(1):23–6. https://doi.org/10.1056/NEJM198301063080106 . (PMID: 10.1056/NEJM1983010630801066847920)
فهرسة مساهمة: Keywords: Congenital heart disease (CHD); Hippo signaling; Hypoplastic left heart syndrome (HLHS); Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM); Left ventricle (LV); Left ventricular outflow tract obstruction (LVOTO)
تواريخ الأحداث: Date Created: 20240617 Date Completed: 20240617 Latest Revision: 20240617
رمز التحديث: 20240617
DOI: 10.1007/978-3-031-44087-8_61
PMID: 38884763
قاعدة البيانات: MEDLINE
الوصف
تدمد:0065-2598
DOI:10.1007/978-3-031-44087-8_61