دورية أكاديمية

Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3.

التفاصيل البيبلوغرافية
العنوان: Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3.
المؤلفون: Cho I; Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea., Lee SY; Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea., Cho KS; Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea. kscho@ewha.ac.kr.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2024 Jun 17; Vol. 40 (8), pp. 245. Date of Electronic Publication: 2024 Jun 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Mustard Plant*/microbiology , Mustard Plant*/growth & development , Soil Pollutants*/metabolism , Germination* , Cadmium*/metabolism , Soil Microbiology* , Zinc*/metabolism , Biodegradation, Environmental* , Panicum*/microbiology , Panicum*/growth & development, Plant Roots/microbiology ; Plant Roots/growth & development ; Metals, Heavy/metabolism ; Soil/chemistry ; Indoleacetic Acids/metabolism
مستخلص: The addition of plant-growth-promoting bacteria (PGPB) to heavy-metal-contaminated soils can significantly improve plant growth and productivity. This study isolated heavy-metal-tolerant bacteria with growth-promoting traits and investigated their inoculation effects on the germination rates and growth of millet (Panicum miliaceum) and mustard (Brassica juncea) in Cd- and Zn-contaminated soil. Leifsonia sp. ZP3, which is resistant to Cd (0.5 mM) and Zn (1 mM), was isolated from forest soil. The ZP3 strain exhibited plant-growth-promoting activity, including indole-3-acetic acid production, phosphate solubilization, catalase activity, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging. In soil contaminated with low concentrations of Cd (0.232 ± 0.006 mM) and Zn (6.376 ± 0.256 mM), ZP3 inoculation significantly increased the germination rates of millet and mustard 8.35- and 31.60-fold, respectively, compared to the non-inoculated control group, while the shoot and root lengths of millet increased 1.77- and 4.44-fold (p < 0.05). The chlorophyll content and seedling vigor index were also 4.40 and 18.78 times higher in the ZP3-treated group than in the control group (p < 0.05). The shoot length of mustard increased 1.89-fold, and the seedling vigor index improved 53.11-fold with the addition of ZP3 to the contaminated soil (p < 0.05). In soil contaminated with high concentrations of Cd and Zn (0.327 ± 0.016 and 8.448 ± 0.250 mM, respectively), ZP3 inoculation led to a 1.98-fold increase in the shoot length and a 2.07-fold improvement in the seedling vigor index compared to the control (p < 0.05). The heavy-metal-tolerant bacterium ZP3 isolated in this study thus represents a promising microbial resource for improving the efficiency of phytoremediation in Cd- and Zn-contaminated soil.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abou-Aly HE, Youssef AM, El-Meihy RM et al (2019) Evaluation of heavy metals tolerant bacterial strains as antioxidant agents and plant growth promoters. Biocatal Agric Biotechnol 19:101110. https://doi.org/10.1016/j.bcab.2019.101110. (PMID: 10.1016/j.bcab.2019.101110)
Ahmad I, Akhtar MJ, Asghar HN et al (2016) Differential effects of Plant Growth-promoting Rhizobacteria on Maize Growth and Cadmium Uptake. J Plant Growth Regul 35:303–315. https://doi.org/10.1007/s00344-015-9534-5. (PMID: 10.1007/s00344-015-9534-5)
Ashraf MA, Hussain I, Rasheed R et al (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manage 198:132–143. https://doi.org/10.1016/j.jenvman.2017.04.060. (PMID: 10.1016/j.jenvman.2017.04.06028456029)
Aslam MM, Okal EJ, Waseem M (2023) Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regul 99:397–412. https://doi.org/10.1007/s10725-022-00917-7. (PMID: 10.1007/s10725-022-00917-7)
Baati H, Siala M, Azri C et al (2020) Resistance of a Halobacterium salinarum isolate from a solar saltern to cadmium, lead, nickel, zinc, and copper. Anton Leeuw Int J G 113:1699–1711. https://doi.org/10.1007/s10482-020-01475-6. (PMID: 10.1007/s10482-020-01475-6)
Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41(2):109–130. https://doi.org/10.1093/femsre/fuw040. (PMID: 10.1093/femsre/fuw04027856492)
Basu A, Prasad P, Das SN et al (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1–20. https://doi.org/10.3390/su13031140. (PMID: 10.3390/su13031140)
Batool A, Ziaf K, Amjad M (2015) Effect of halo-priming on germination and vigor index of cabbage (Brassica oleracea var. capitata). J Environ Agri Sci 2(7):1–8.
Battu L, Ulaganathan K (2020) Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. Ku-Ls. Funct Integr Genomics 20:237–243. https://doi.org/10.1007/s10142-019-00713-z. (PMID: 10.1007/s10142-019-00713-z31482368)
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9. (PMID: 10.1007/s11274-011-0979-922805914)
Bhattacharyya C, Banerjee S, Acharya U et al (2020) Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci Rep 10. https://doi.org/10.1038/s41598-020-72439-z.
Cai Y, Tao WZ, Ma YJ et al (2018) Leifsonia flava sp. nov., a novel actinobacterium isolated from the rhizosphere of Aquilegia viridiflora. J Microbiol 56:549–555. https://doi.org/10.1007/s12275-018-8061-z. (PMID: 10.1007/s12275-018-8061-z30047083)
Charkiewicz AE, Omeljaniuk WJ, Nowak K et al (2023) Cadmium Toxicity and Health Effects-A Brief Summary. Molecules 14;28(18):6620. https://doi.org/10.3390/molecules28186620.
Chaudhry H, Nisar N, Mehmood S et al (2020) Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatal Agric Biotechnol 23:101489. https://doi.org/10.1016/j.bcab.2019.101489. (PMID: 10.1016/j.bcab.2019.101489)
Chavez-Diaz IF, Mena-Violante HG, Hernandez-Lauzardo AN et al (2018) Postharvest control of Rhizopus stolonifer on blackberry (Rubus fruticosus) by blackberry native crop bacteria. Rev Fac Cienc Agrar 51(2):306–317.
Cho KS (2021) Plant growth-promoting bacteria for remediation of heavy metal contaminated soil: characteristics, application and prospects. Microbiol Biotechnol Lett 48:399–422. https://doi.org/10.48022/mbl.2008.08015. (PMID: 10.48022/mbl.2008.08015)
Contois BD (1959) Kinetics of bacterial growth: relationship between Population Density and specific growth rate of continuous cultures. Microbiology 21(1):40–50.
Dabir A, Heidari P, Ghorbani H, Ebrahimi A (2019) Cadmium and lead removal by new bacterial isolates from coal and aluminum mines. Int J Environ Sci Technol 16:8297–8304. https://doi.org/10.1007/s13762-019-02303-9. (PMID: 10.1007/s13762-019-02303-9)
Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162. https://doi.org/10.1016/j.femsec.2004.11.005. (PMID: 10.1016/j.femsec.2004.11.00516329902)
Dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL (2019) A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol 19:1–14. https://doi.org/10.1186/s12866-019-1446-2. (PMID: 10.1186/s12866-019-1446-2)
Du J, Guo Z, Li R, Ali A, Guo D, Lahori AH, Zhang Z et al (2020) Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of cd and zn based on the plant physiological mechanisms. Environ Pollut 26:114213. https://doi.org/10.1016/j.envpol.2020.114213. (PMID: 10.1016/j.envpol.2020.114213)
Egidi E, Wood JL, Fox EM et al (2017) Draft genome sequence of Leifsonia sp. strain NCR5, a rhizobacterium isolated from cadmium-contaminated soil. Genome Announc 5(23):10–1128. https://doi.org/10.1128/genomeA.00520-17. (PMID: 10.1128/genomeA.00520-17)
Evtushenko LI (2015) Leifsonia. Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, pp 1–32. https://doi.org/10.1002/9781118960608.gbm00102.
Ganzert L, Bajerski F, Mangelsdorf K et al (2011) Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family microbacteriaceae from Livingston Island, Antarctica. Int J Syst Evol Microbiol 61:1938–1943. https://doi.org/10.1099/ijs.0.021956-0. (PMID: 10.1099/ijs.0.021956-020833887)
Genchi G, Sinicropi MS, Lauria G et al (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782. https://doi.org/10.3390/ijerph17113782. (PMID: 10.3390/ijerph17113782324665867312803)
Grobelak A, Kokot P, Światek J et al (2018) Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J Ecol Eng 19:150–157. https://doi.org/10.12911/22998993/89818. (PMID: 10.12911/22998993/89818)
Guo H, Luo S, Chen L et al (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085. (PMID: 10.1016/j.biortech.2010.06.08520637605)
Haider FU, Liqun C, Coulter JA et al (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887. https://doi.org/10.1016/j.ecoenv.2020.111887. (PMID: 10.1016/j.ecoenv.2020.11188733450535)
Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. https://doi.org/10.1093/molbev/mst012. (PMID: 10.1093/molbev/mst01223486614)
He X, Xu M, Wei Q et al (2020) Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf 205:111333. https://doi.org/10.1016/j.ecoenv.2020.111333. (PMID: 10.1016/j.ecoenv.2020.11133332979802)
Heredia-Acuña C, Almaraz-Suarez JJ, Arteaga-Garibay R et al (2019) Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus Pseudostrobus Lindl). J Res 30(5):1727–1734. https://doi.org/10.1007/s11676-018-0723-5. (PMID: 10.1007/s11676-018-0723-5)
Hussain S, Khan M, Sheikh TMM et al (2022) Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Front Microbiol 13:900740. https://doi.org/10.3389/fmicb.2022.900740. (PMID: 10.3389/fmicb.2022.900740357117549197589)
Hwang J, Lee G, Park M et al (2013) Changes of phenolics, antioxidant activities and fatty acid contents of Rhizophora mangle exposed to Heavy metals. J Korean Acad Industr Coop Soc 14:3589–3595. https://doi.org/10.5762/kais.2013.14.7.3589. (PMID: 10.5762/kais.2013.14.7.3589)
Ibrahim S, Zulkharnain A, Zahri KNM et al (2020) Effect of heavy metals and other xenobiotics on biodegradation of waste canola oil by cold-adapted Rhodococcus sp. strain AQ5-07. Rev Mex Ing Quim 19:1041–1052. https://doi.org/10.24275/rmiq/Bio917. (PMID: 10.24275/rmiq/Bio917)
Iwase T, Tajima A, Sugimoto S et al (2013) A simple assay for measuring catalase activity: a visual approach. Sci Rep 3. https://doi.org/10.1038/srep03081.
Jiang XJ, Luo YM, Liu Q, Liu SL, Zhao QG (2004) Effects of cadmium on nutrient uptake and translocation by Indian Mustard. Environ Geochem Health 26:319–324. https://doi.org/10.1023/B:EGAH.0000039596.15586.b3. (PMID: 10.1023/B:EGAH.0000039596.15586.b315499789)
Jiang X, Li WW, Han M et al (2022) Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress. Tree Physiol 42:1043–1058. https://doi.org/10.1093/treephys/tpab159. (PMID: 10.1093/treephys/tpab15934850946)
Kang SM, Asaf S, Kim SJ et al (2016) Complete genome sequence of plant growth-promoting bacterium Leifsonia xyli SE134, a possible gibberellin and auxin producer. J Biotechnol 239:34–38. https://doi.org/10.1016/j.jbiotec.2016.10.004. (PMID: 10.1016/j.jbiotec.2016.10.00427725207)
Kang SM, Waqas M, Hamayun M et al (2017) Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato. J Plant Interact 12:373–380. https://doi.org/10.1080/17429145.2017.1370142. (PMID: 10.1080/17429145.2017.1370142)
Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharm Res 6:1142–1145.
Khatri S, Sharma RK, Shridhar V (2020) Influence of Cadmium-Tolerant and Plant Growth-promoting Rhizobacteria on Cadmium Accumulation and Growth Response of Wheat Seedlings Under Mountain Ecosystem. Agr Res 9:56–65. https://doi.org/10.1007/s40003-019-00407-9. (PMID: 10.1007/s40003-019-00407-9)
Kim Y-K, Hong S-J, Shim C-K et al (2012) Functional analysis of Bacillus subtilis isolates and Biological Control of Red Pepper Powdery Mildew using Bacillus subtilis R2-1. Res Plant Dis 18:201–209. https://doi.org/10.5423/rpd.2012.18.3.201. (PMID: 10.5423/rpd.2012.18.3.201)
Kim D-Y, Kim HS, Yoo JS et al (2020) Antioxidant activity of lactic acid Bacteria isolated from Korean Traditional Food Kimchi. J Dairy Sci Biotechnol 38:89–97. https://doi.org/10.22424/jdsb.2020.38.2.89. (PMID: 10.22424/jdsb.2020.38.2.89)
Kour R, Jain D, Bhojiya AA et al (2019) Zinc biosorption, biochemical and molecular characterization of plant growth-promoting zinc-tolerant bacteria. 3 Biotech 9:1–17. https://doi.org/10.1007/s13205-019-1959-2. (PMID: 10.1007/s13205-019-1959-2)
Kour D, Rana KL, Kaur T et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1. (PMID: 10.1016/S1002-0160(20)60057-1)
Lee YY, Cho KS (2023b) Isolation and characterization of Plant Growth-promoting Bacteria for the phytoremediation of Diesel-and heavy metal-contaminated soil. Microbiol Biotechnol Lett 51(4):484–499. https://doi.org/10.48022/mbl.2308.08003. (PMID: 10.48022/mbl.2308.08003)
Lee J-D, Park J-A, Park B-J et al (2016) Effect of Shading, Light Quality, and Chemical elicitation on growth and bioactive compound content of Potentilla Kleiniana Wight et Arnott. Korean J Plant Res 29:363–375. https://doi.org/10.7732/kjpr.2016.29.4.363. (PMID: 10.7732/kjpr.2016.29.4.363)
Lee SY, Lee YY, Cho KS (2021) Characterization of heavy metal tolerant and plant growth-promoting rhizobacteria isolated from soil contaminated with heavy metal and diesel. Microbiol Biotechnol Lett 49:413–424. https://doi.org/10.48022/mbl.2106.06013. (PMID: 10.48022/mbl.2106.06013)
Lee YJ, Ganbat D, Jeong GE et al (2022) A study on the isolation and characterization of Aerobic Halophilic microorganisms isolated from the Soil around the Port on Jeju Island. Food Eng Prog 26:140–146. https://doi.org/10.13050/foodengprog.2022.26.3.140. (PMID: 10.13050/foodengprog.2022.26.3.140)
Lee SY, Lee YY, Cho KS (2023a) Inoculation effect of heavy metal tolerant and plant growth promoting rhizobacteria for rhizoremediation. Int J Environ Sci Technol 21(2):1419–1434. https://doi.org/10.1007/s13762-023-05078-2. (PMID: 10.1007/s13762-023-05078-2)
Liu J, Zhang D, Yuan Y et al (2021) A promising crop for cadmium-contamination remediation: Broomcorn millet. Ecotoxicol Environ Saf 224. https://doi.org/10.1016/j.ecoenv.2021.112669.
Liu A, Wang W, Zheng X et al (2022a) Improvement of the cd and zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. https://doi.org/10.1016/j.chemosphere.2022.134900 . Chemosphere 302.
Liu J, Zhang D, Zhang Y et al (2022b) Dynamic and comparative transcriptome analyses reveal key factors contributing to Cadmium Tolerance in Broomcorn Millet. Int J Mol Sci 23. https://doi.org/10.3390/ijms23116148.
Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):10–1128. https://doi.org/10.1128/mmbr.00063-16. (PMID: 10.1128/mmbr.00063-16)
Louden BC, Haarmann D, Lynne AM (2011) Use of Blue Agar CAS Assay for Siderophore Detection. J Microbiol Biol Educ 12:51–53. https://doi.org/10.1128/jmbe.v12i1.249. (PMID: 10.1128/jmbe.v12i1.249236537423577196)
Maslennikova D, Nasyrova K, Chubukova O et al (2022) Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life 12(10):1675. https://doi.org/10.3390/life12101675.
Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P (2007) Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res 67:3970–3975. https://doi.org/10.1158/0008-5472.CAN-06-3822. (PMID: 10.1158/0008-5472.CAN-06-382217440113)
Minuț M, Diaconu M, Roșca M et al (2023) Screening of Azotobacter, Bacillus and Pseudomonas species as Plant Growth-promoting Bacteria. https://doi.org/10.3390/pr11010080 . Processes 11.
Mirzaei M, Ladan Moghadam A, Hakimi L, Danaee E (2020) Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iran J Plant Physiol. https://doi.org/10.30495/ijpp.2020.672574. (PMID: 10.30495/ijpp.2020.672574)
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8. (PMID: 10.1007/s10311-010-0297-8)
Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of pseudomonas aeruginosa, alcaligenes feacalis and bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of brassica juncea. Int J Phytoremediation 18:200–209. https://doi.org/10.1080/15226514.2015.1073671.
Neshat M, Abbasi A, Hosseinzadeh A et al (2022) Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants 28:347–361. https://doi.org/10.1007/s12298-022-01128-0. (PMID: 10.1007/s12298-022-01128-0354008868943118)
Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125. https://doi.org/10.1016/j.apsoil.2016.04.009. (PMID: 10.1016/j.apsoil.2016.04.009)
Nies DH (1992) CzcR and CzcD, Gene products affecting regulation of resistance to Cobalt, Zinc, and Cadmium (Czc System) in Alcaligenes eutrophus. J Bacteriol 174(24):8102–8110. https://doi.org/10.1128/jb.174.24.8102-8110.1992. (PMID: 10.1128/jb.174.24.8102-8110.19921459958207549)
Okereafor U, Makhatha M, Mekuto L et al (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health 17(7):2204. https://doi.org/10.3390/ijerph17072204. (PMID: 10.3390/ijerph17072204322183297178168)
Oleńska E, Małek W, Wójcik M et al (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682. https://doi.org/10.1016/j.scitotenv.2020.140682. (PMID: 10.1016/j.scitotenv.2020.14068232758827)
Paque S, Weijers D (2016) Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol 14. https://doi.org/10.1186/s12915-016-0291-0.
Pramanik K, Mitra S, Sarkar A et al (2017) Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24:24419–24437. https://doi.org/10.1007/s11356-017-0033-z. (PMID: 10.1007/s11356-017-0033-z)
Qadir M, Hussain A, Hamayun M et al (2020) Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 258. https://doi.org/10.1016/j.chemosphere.2020.127386.
Qin S, LIU H, NIE Z et al (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30:168–180. https://doi.org/10.1016/S1002-0160(20)60002-9. (PMID: 10.1016/S1002-0160(20)60002-9)
Rahmanian M, Habib K, Younes RD, Mir Hasan RS (2011) Effects of heavy metal resistant soil microbes inoculation and soil cd concentration on growth and metal uptake of millet, couch grass and alfalfa. Afr J Microbiol Res 5(4):403–410.
Rawat P, Das S, Shankhdhar D, Shankhdhar SC Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21(1):49–68. https://doi.org/10.1007/s42729-020-00342-7/Published.
Reis F, Pereira AJ, Tavares RM et al (2021) Cork oak forests soil bacteria: potential for sustainable agroforest production. Microorganisms 9(9):1973. https://doi.org/10.3390/microorganisms9091973. (PMID: 10.3390/microorganisms9091973345768688472395)
Rizvi A, Ahmed B, Zaidi A, Khan MS (2020) Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Environ Monit Assess 192. https://doi.org/10.1007/s10661-020-08758-5.
Rizzo C, Conte A, Azzaro M et al (2020) Cultivable bacterial communities in brines from perennially icecovered and pristine antarctic lakes: ecological and biotechnological implications. Microorganisms 8. https://doi.org/10.3390/microorganisms8060819.
Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ et al (2004) Cadmium-induced subcellular accumulation of O 2 . and H 2 O 2 in pea leaves. Plant Cell Environ 27:1122–1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x. (PMID: 10.1111/j.1365-3040.2004.01217.x)
Samayoa BE, Shen FT, Lai WA, Chen WC (2020) Screening and assessment of potential plant growth-promoting bacteria associated with Allium cepa linn. Microbes Environ 35. https://doi.org/10.1264/jsme2.ME19147.
Shehata MG, Abu-Serie MM, Abd El-Azi NM, El-Sohaimy SA (2019) In vitro Assessment of antioxidant, Antimicrobial and Anticancer properties of lactic acid Bacteria. Int J Pharm 15:651–663. https://doi.org/10.3923/ijp.2019.651.663. (PMID: 10.3923/ijp.2019.651.663)
Singh RP, Singh P, Srivastava A (2023) Heavy metal toxicity: environmental concerns, Remediation and opportunities. Springer.
Srimathi K, Suji HA (2018) Siderophores Detection by using Blue Agar CAS Assay methods. Int J Sci Res Biol Sci 5:180–185. https://doi.org/10.26438/ijsrbs/v5i6.180185. (PMID: 10.26438/ijsrbs/v5i6.180185)
Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Oxford University Press.
Uddling J, Gelang-Alfredsson J, Piikki K et al (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91:37–46. https://doi.org/10.1007/s11120-006-9077-5. (PMID: 10.1007/s11120-006-9077-517342446)
Uroz S, Buée M, Deveau A et al (2016) Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem 103:471–488. https://doi.org/10.1016/j.soilbio.2016.09.006. (PMID: 10.1016/j.soilbio.2016.09.006)
Wu Y, Ma L, Zhang X et al (2020) A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant Soil 455:257–270. https://doi.org/10.1007/s11104-020-04684-0. (PMID: 10.1007/s11104-020-04684-0)
Yahaghi Z, Shirvani M, Nourbakhsh F et al (2018) Isolation and characterization of Pb-solubilizing bacteria and their effects on pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. J Microbiol Biotechnol 28:1156–1167. https://doi.org/10.4014/jmb.1712.12038. (PMID: 10.4014/jmb.1712.1203829975995)
معلومات مُعتمدة: 2022R1A2C2006615 & RS-2023-0021722 National Research Foundation (NRF) of Korea
فهرسة مساهمة: Keywords: Brassica juncea; Leifsonia sp.; Panicum miliaceum; Heavy metal tolerance; Phytoremediation; Plant-growth-promoting bacteria (PGPB)
المشرفين على المادة: 0 (Soil Pollutants)
00BH33GNGH (Cadmium)
J41CSQ7QDS (Zinc)
0 (Metals, Heavy)
0 (Soil)
0 (Indoleacetic Acids)
6U1S09C61L (indoleacetic acid)
تواريخ الأحداث: Date Created: 20240617 Date Completed: 20240617 Latest Revision: 20240713
رمز التحديث: 20240713
DOI: 10.1007/s11274-024-04053-4
PMID: 38884883
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-024-04053-4