دورية أكاديمية

Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway.

التفاصيل البيبلوغرافية
العنوان: Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway.
المؤلفون: Su Q; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.; The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China., Yang SP; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.; School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China., Guo JP; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China., Rong YR; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China., Sun Y; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China., Chai YR; Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.
المصدر: Microbiology and immunology [Microbiol Immunol] 2024 Aug; Vol. 68 (8), pp. 281-293. Date of Electronic Publication: 2024 Jun 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: Australia NLM ID: 7703966 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1348-0421 (Electronic) Linking ISSN: 03855600 NLM ISO Abbreviation: Microbiol Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2008- > : Richmond : Wiley-Blackwell
Original Publication: 1977-<2007> : Tokyo : Center for Academic Publications Japan.
مواضيع طبية MeSH: Catechin*/analogs & derivatives , Catechin*/pharmacology , Sirtuin 1*/metabolism , Lipopolysaccharides* , Thymus Gland*/drug effects , Thymus Gland*/metabolism , Signal Transduction*/drug effects , AMP-Activated Protein Kinases*/metabolism, Animals ; Mice ; Female ; Reactive Oxygen Species/metabolism ; Antioxidants/pharmacology ; Membrane Potential, Mitochondrial/drug effects ; Atrophy
مستخلص: The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
(© 2024 The Societies and John Wiley & Sons Australia, Ltd.)
References: Zdrojewicz Z, Pachura E, Pachura P. The thymus: a forgotten, but very important organ. Adv Clin Exp Med. 2016;25:369–375.
Lynch HE, Goldberg GL, Chidgey A, Van den Brink MRM, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009;30:366–373.
Takahama Y, Ohigashi I, Baik S, Anderson G. Generation of diversity in thymic epithelial cells. Nat Rev Immunol. 2017;17:295–305.
Thapa P, Farber DL. The role of the thymus in the immune response. Thorac Surg Clin. 2019;29:123–131.
Min H, Montecino‐Rodriguez E, Dorshkind K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol. 2004;173:245–250.
Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB. Architectural changes in the thymus of aging mice. Aging cell. 2008;7:158–167.
Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Sem Immunol. 2012;24:309–320.
Chaudhry MS, Velardi E, Dudakov JA, van den Brink MRM. Thymus: the next (re)generation. Immunol Rev. 2016;271:56–71.
Kinsella S, Dudakov JA. When the damage is done: injury and repair in thymus function. Front Immunol. 2020;11:1745.
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus degeneration and regeneration. Front Immunol. 2021;12:706244.
Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Piacenza F, Lattanzio F, et al. Is there a possible single mediator in modulating neuroendocrine‐thymus interaction in ageing? Curr Aging Sci. 2013;6:99–107.
Fabris N, Mocchegiani E, Provinciali M. Plasticity of neuroendocrine‐thymus interactions during aging. Exp Geront. 1997;32:415–429.
Chu C, Deng J, Man Y, Qu Y. Green tea extracts epigallocatechin‐3‐gallate for different treatments. BioMed Res Int. 2017;2017:1–9.
Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, et al. Preventive effects of (‐)‐epigallocatechin gallate on diethylnitrosamine‐induced liver tumorigenesis in obese and diabetic C57BL/KsJ‐db/db mice. Cancer Prev Res. 2011;4:396–403.
Yellayi S, Naaz A, Szewczykowski MA, Sato T, Woods JA, Chang J, et al. The phytoestrogen genistein induces thymic and immune changes: a human health concern? Proc Natl Acad Sci U S A. 2002;99:7616–7621.
Yellayi S, Zakroczymski M, Selvaraj V, Valli VE, Ghanta V, Helferich WG, et al. The phytoestrogen genistein suppresses cell‐mediated immunity in mice. J Endocrinol. 2003;176:267–274.
King R, Bursill D. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr. 1998;67:867–872.
Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat. 2016;26:907–916.
Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules. 2020;25:3146.
Wang M, Zhong H, Zhang X, Huang X, Wang J, Li Z, et al. EGCG promotes PRKCA expression to alleviate LPS‐induced acute lung injury and inflammatory response. Sci Rep. 2021;11:11014.
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective effect of epigallocatechin‐3‐gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID‐19? Int J Mol Sci. 2020;21:5171.
Pervin M, Karim MR, Kuramochi M, Izawa T, Kuwamura M, Yamate J. Macrophage populations and expression of regulatory inflammatory factors in hepatic macrophage‐depleted rat livers under lipopolysaccharide (LPS) treatment. Toxicol Pathol. 2018;46:540–552.
Xiao L, Song Y, Huang W, Yang S, Fu J, Feng X, et al. Expression of SOX2, NANOG and OCT4 in a mouse model of lipopolysaccharide‐induced acute uterine injury and intrauterine adhesions. Reprod Biol Endocrinol. 2017;15:14.
Stoyanoff TR, Rodríguez JP, Todaro JS, Colavita JPM, Torres AM, Aguirre MV. Erythropoietin attenuates LPS‐induced microvascular damage in a murine model of septic acute kidney injury. Biomed Pharmacother. 2018;107:1046–1055.
Abramson J, Goldfarb Y. AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol. 2016;46:22–33.
Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol. 2009;21:582–589.
Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The OCT4 and NANOG transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–440.
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–655.
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Sem Cancer Biol. 2020;67:74–82.
Zhang YH, Takahashi K, Jiang GZ, Kawai M, Fukada M, Yokochi T. In vivo induction of apoptosis (programmed cell death) in mouse thymus by administration of lipopolysaccharide. Infect Immun. 1993;61:5044–5048.
Kato Y. Role of tumor necrosis factor‐α and glucocorticoid on lipopolysaccharide (LPS)‐induced apoptosis of thymocytes. FEMS Immunol Med Microbiol. 1995;12:195–203.
Gaweł S, Wardas M, Niedworok E, Wardas P. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek. 2004;57:453–455.
Miller JFAP. The golden anniversary of the thymus. Nat Rev Immunol. 2011;11:489–495.
Luo M, Xu L, Qian Z, Sun X. Infection‐associated thymic atrophy. Front Immunol. 2021;12:652538.
Savino W, Dardenne M. Nutritional imbalances and infections affect the thymus: consequences on T‐cell‐mediated immune responses. Proc Nutr Soc. 2010;69:636–643.
Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.
Cote J, Taylor E. The glycosyltransferases of LPS core: a review of four heptosyltransferase enzymes in context. Int J Mol Sci. 2017;18:2256.
Liang C, Liao J, Deng Z, Song C, Zhang J, Zabeau L, et al. Leptin attenuates lipopolysaccharide‐induced apoptosis of thymocytes partially via down‐regulation of cPLA2 and p38 MAPK activation. Int Immunopharmacol. 2013;15:620–627.
Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, n‐acetyl cysteine, to increase the survival of thymocytes during infection‐induced and lipopolysaccharide‐induced thymic atrophy. Immunology. 2019;157:21–36.
Ullewar MP, Umathe SN. A possible role of endogenous central corticotrophin releasing factor in lipopolysaccharide induced thymic involution and cell apoptosis: effect of peripheral injection of corticotrophin releasing factor. J Neuroimmunol. 2015;280:58–65.
Zhou YJ, Peng H, Chen Y, Liu YL. Alterations of thymic epithelial cells in lipopolysaccharide‐induced neonatal thymus involution. Chin Med J. 2016;129:59–65.
Kuypers E, Wolfs TGAM, Collins JJP, Jellema RK, Newnham JP, Kemp MW, et al. Intraamniotic lipopolysaccharide exposure changes cell populations and structure of the ovine fetal thymus. Reprod Sci. 2013;20:946–956.
Oh J, Wang W, Thomas R, Su DM. Thymic rejuvenation via FOXN1‐reprogrammed embryonic fibroblasts (FREFS) to counteract age‐related inflammation. JCI Insight. 2020;5:e140313.
Wu Z, Huang S, Li T, Li N, Han D, Zhang B, et al. Gut microbiota from green tea polyphenol‐dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome. 2021;9:184.
Riegsecker S, Wiczynski D, Kaplan MJ, Ahmed S. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sci. 2013;93:307–312.
Chourasia M, Koppula P, Battu A, Ouseph M, Singh A. EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS‐COV‐2 infection. Molecules. 2021;26:1200.
Pfister G, Savino W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation. 2008;15:351–364.
Wu D. Green tea EGCG, T‐cell function, and T‐cell‐mediated autoimmune encephalomyelitis. J Investig Med. 2016;64:1213–1219.
Schwager J, Seifert N, Bompard A, Raederstorff D, Bendik I. Resveratrol, EGCG and vitamins modulate activated T lymphocytes. Molecules. 2021;26:5600.
Byun JK, Yoon BY, Jhun JY, Oh HJ, Kim EK, Min JK, et al. Epigallocatechin‐3‐gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4+ T‐cell subsets. Immunol Lett. 2014;157:51–59.
Lee SY, Jung YO, Ryu JG, Oh HJ, Son HJ, Lee SH, et al. Epigallocatechin‐3‐gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper‐17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling. J Leukoc Biol. 2016;100:559–568.
Wang Y, Chen H, Sun C, Shen H, Cui X. Metformin attenuates lipopolysaccharide‐induced epithelial cell senescence by activating autophagy. Cell Biol Int. 2021;45:927–935.
Hernandez‐Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–453.
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, et al. Plant polyphenols for aging health: implication from their autophagy modulating properties in age‐associated diseases. Pharmaceuticals. 2021;14:982.
Nan W, Zhonghang X, Keyan C, Tongtong L, Wanshu G, Zhongxin X. Epigallocatechin‐3‐gallate reduces neuronal apoptosis in rats after middle cerebral artery occlusion injury via PI3K/AKT/eNOS signaling pathway. BioMed Res Int. 2018;2018:1–9.
López‐Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217.
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age‐associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4–S9.
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117:524–529.
Yang H, Hua C, Yang X, Fan X, Song H, Peng L, et al. Pterostilbene prevents LPS‐induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo. Food Funct. 2020;11:4471–4484.
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, et al. Phillygenin inhibits LPS‐induced activation and inflammation of LX2 cells by TLR4/MyD88/NF‐κB signaling pathway. J Ethnopharmacol. 2020;248:112361.
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective effect of epigallocatechin‐3‐gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID‐19? Int J Mol Sci. 2020;21:5171.
Kanlaya R, Thongboonkerd V. Molecular mechanisms of epigallocatechin‐3‐gallate for prevention of chronic kidney disease and renal fibrosis: preclinical evidence. Curr Dev Nutr. 2019;3:nzz101.
Chen C, Liu Q, Liu L, Hu Y, Feng Q. Potential biological effects of (‐)‐epigallocatechin‐3‐gallate on the treatment of nonalcoholic fatty liver disease. Mol Nutr Food Res. 2018;62:1700483.
Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS‐induced acute lung injury through the HMGB1‐mediated TLR4/NF‐κB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.
Xiao L, Song Y, Huang W, Yang S, Fu J, Feng X, et al. Expression of SOX2, NANOG and OCT4 in a mouse model of lipopolysaccharide‐induced acute uterine injury and intrauterine adhesions. Reprod Biol Endocrinol. 2017;15:14.
Domscheit H, Hegeman MA, Carvalho N, Spieth PM. Molecular dynamics of lipopolysaccharide‐induced lung injury in rodents. Front Physiol. 2020;11:36.
Xiong X, Ren Y, Cui Y, Li R, Wang C, Zhang Y. Obeticholic acid protects mice against lipopolysaccharide‐induced liver injury and inflammation. Biomed Pharmacother. 2017;96:1292–1298.
Stoyanoff TR, Rodríguez JP, Todaro JS, Colavita JPM, Torres AM, Aguirre MV. Erythropoietin attenuates LPS‐induced microvascular damage in a murine model of septic acute kidney injury. Biomed Pharmacother. 2018;107:1046–1055.
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS preconditioning attenuates apoptosis mechanism by inhibiting NF‐κB and caspase‐3 activity: TLR4 pre‐activation in the signaling pathway of LPS‐induced neuroprotection. Mol Neurobiol. 2021;58:2407–2422.
Hu H, Fu Y, Li M, Xia H, Liu Y, Sun X, et al. Interleukin‐35 pretreatment attenuates lipopolysaccharide‐induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. Int Immunopharmacol. 2020;86:106725.
Wen Y, Xiao H, Liu Y, Yang Y, Wang Y, Xu S, et al. Polysaccharides from dendrobium officinale ameliorate colitis‐induced lung injury via inhibiting inflammation and oxidative stress. Chem Biol Interact. 2021;347:109615.
Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)‐induced acute lung injury via induction of AMPK/GSK3β‐Nrf2 signal axis. Redox Biol. 2017;12:311–324.
Smith R, Tran K, Smith C, Mcdonald M, Shejwalkar P, Hara K. The role of the nrf2/are antioxidant system in preventing cardiovascular diseases. Diseases. 2016;4:34.
Sakamuru S, Attene‐Ramos MS, Xia M. Mitochondrial membrane potential assay. Methods Mol Biol. 2016;1473:17–22.
Haider SZ, Mohanraj N, Markandeya YS, Joshi PG, Mehta B. Picture perfect: imaging mitochondrial membrane potential changes in retina slices with minimal stray fluorescence. Exp Eye Res. 2021;202:108318.
Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS‐induced acute lung injury through the HMGB1‐mediated TLR4/NF‐κB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.
Chen T, Wang R, Jiang W, Wang H, Xu A, Lu G, et al. Protective effect of astragaloside IV against paraquat‐induced lung injury in mice by suppressing Rho signaling. Inflammation. 2016;39:483–492.
Aw D, Taylor‐Brown F, Cooper K, Palmer DB. Phenotypical and morphological changes in the thymic microenvironment from ageing mice. Biogerontology. 2009;10:311–322.
Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al. Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–24737.
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–642.
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, et al. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor‐inducing potential. Cell Stem Cell. 2013;13:433–445.
Mamun MA, Mannoor K, Cao J, Qadri F, Song X. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. J Mol Cell Biol. 2020;12:85–98.
Ferreirinha P, Ribeiro C, Morimoto J, Landry JJM, Matsumoto M, Meireles C, et al. A novel method to identify post‐AIRE stages of medullary thymic epithelial cell differentiation. Eur J Immunol. 2021;51:311–318.
Zou X, Zhang Y, Wang X, Zhang R, Yang W. The role of AIRE deficiency in infertility and its potential pathogenesis. Front Immunol. 2021;12:641164.
Lee SH, Nam HJ, Kang HJ, Kwon HW, Lim YC. Epigallocatechin‐3‐gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur J Cancer. 2013;49:3210–3218.
Fujiki H, Sueoka E, Rawangkan A, Suganuma M. Human cancer stem cells are a target for cancer prevention using (‐)‐epigallocatechin gallate. J Cancer Res Clin Oncol. 2017;143:2401–2412.
Dolcet X, Llobet D, Pallares J, Matias‐Guiu X. NF‐kB in development and progression of human cancer. Virchows Arch. 2005;446:475–482.
Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017;45:31–37.
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022;13:831168.
Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging related signaling pathways. Mech Ageing Dev. 2020;187:111215.
Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X, et al. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis‐induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother. 2019;118:109363.
Miltonprabu S, Thangapandiyan S. Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol. 2015;29:321–335.
Shanmugam T, Selvaraj M, Poomalai S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via NRF2/KEAP1 signaling pathway in rats: an in‐vivo and in‐silico study. Int Immunopharmacol. 2016;39:128–139.
Wei T, Feng Y, Cao J, Li JH, Yuan SL, Ding Y, et al. Dosage effects of resveratrol on thymus involution in d‐galactose‐treated mice. J Food Biochem. 2021;45:e13709.
Yang S, Su Q, Zhang Y, Sun Y, Chai Y. Metformin ameliorates thymus degeneration of mice by regulating mitochondrial function. Int Immunopharmacol. 2022;108:108744.
Zhao W, Xu Z, Cao J, Fu Q, Wu Y, Zhang X, et al. Elamipretide (SS‐31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation. 2019;16:230.
معلومات مُعتمدة: 21A310022 Key Scientific Research Project of Higher Education Institution
فهرسة مساهمة: Keywords: AMPK/Sirt1; epigallocatechin‐3‐gallate; lipopolysaccharide; thymocytes; thymus
المشرفين على المادة: 8R1V1STN48 (Catechin)
BQM438CTEL (epigallocatechin gallate)
EC 3.5.1.- (Sirtuin 1)
0 (Lipopolysaccharides)
EC 3.5.1.- (Sirt1 protein, mouse)
EC 2.7.11.31 (AMP-Activated Protein Kinases)
0 (Reactive Oxygen Species)
0 (Antioxidants)
تواريخ الأحداث: Date Created: 20240617 Date Completed: 20240805 Latest Revision: 20240805
رمز التحديث: 20240805
DOI: 10.1111/1348-0421.13159
PMID: 38886542
قاعدة البيانات: MEDLINE
الوصف
تدمد:1348-0421
DOI:10.1111/1348-0421.13159